← 返回
基于机器学习的两步算法预测变功率输入下质子交换膜水电解槽性能
Machine learning two-step algorithm for prediction of proton exchange membrane water electrolyzer cell performance under variable power inputs
| 作者 | Nikola Frani · Andrej Zvonimir Tomić · Frano Barbi · Ivan Piv |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 343 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源 质子交换膜水电解槽 机器学习 动态功率输入 性能预测 |
语言:
中文摘要
摘要 可再生能源(如太阳能和风能)具有波动性,导致输入条件动态变化,难以通过传统的实验室方法进行复现和分析。本研究提出一种基于机器学习的方法,用于预测在动态功率输入条件下质子交换膜水电解槽(PEMWE)的性能,旨在降低实验复杂性,并加速控制系统开发及PEMWE技术的部署应用。本文开发了一种新颖的两步机器学习算法:首先采用前馈神经网络估计PEMWE的电流,然后利用长短期记忆网络架构预测氢气产量。模型训练与验证所用的实验数据来自八种不同功率曲线并在多种温度条件下采集获得。该算法在未见过的操作电压曲线场景下表现出优异的预测能力和泛化性能,电流预测的平均绝对误差为0.0183,氢气产量预测的平均绝对误差为0.1833。进一步在准随机功率输入和恒定功率输入条件下的验证结果表明,即使在噪声干扰环境下,该方法仍具有良好的鲁棒性。本研究凸显了机器学习作为复杂PEMWE实验数字替代工具的潜力,能够实现精确的性能预测,为先进的控制策略以及绿色制氢系统的实时优化奠定了基础。
English Abstract
Abstract The fluctuating nature of renewable energy sources, such as solar and wind, introduces dynamic input conditions that are difficult to replicate and analyze using conventional laboratory approaches. This work presents a machine learning-based approach for predicting proton exchange membrane water electrolyzer (PEMWE) performance under dynamic power inputs, aiming to reduce experimental complexity, and accelerate control system development and PEMWE deployment. A novel two-step machine learning algorithm was developed using a feedforward neural network for PEMWE current estimation and a long short-term memory architecture for hydrogen production forecasting. Experimental data, gathered from eight distinct power profiles under variable temperature regimes, was used to train and validate the models. The algorithm demonstrated strong predictive capabilities and generalization across unseen operational voltage profiles, achieving a mean absolute error of 0.0183 for current prediction and 0.1833 for hydrogen production. Additional validation on quasi-random and constant-power profiles confirmed the robustness of the proposed approach, even under noisy conditions. This study highlights the potential of machine learning to serve as a digital surrogate for complex PEMWE experiments, enabling accurate performance predictions and paving the way for advanced control strategies and real-time system optimization of green hydrogen production.
S
SunView 深度解读
该机器学习预测算法对阳光电源制氢储能系统具有重要应用价值。可集成至iSolarCloud平台,实现光伏-电解槽动态耦合优化:利用SG逆变器实时功率数据,通过神经网络预测PEM电解槽性能,指导ST储能系统功率调度策略。该两步算法(电流估算+产氢预测)可优化GFM控制下的波动功率管理,减少实验成本,加速绿氢-光储充一体化系统开发,为可再生能源制氢提供数字孪生解决方案,提升系统经济性与响应速度。