← 返回
光伏发电技术 机器学习 ★ 5.0

一种用于比较光伏跟踪系统的折衷解决方案:基于7E和不确定性分析并辅以机器学习算法

A compromise solution for comparison photovoltaic tracking systems: A 7E and uncertainty analysis assisted by machine learning algorithm

语言:

中文摘要

随着光伏产业的持续扩张,固定式系统效率低下的问题日益突出,亟需改进方案,而跟踪系统作为提升发电量的可行选择应运而生。为此,本研究提出了一种基于折衷解的新框架,对四种常见的太阳能跟踪类型进行评估,包括单轴东西向跟踪(SEWT)、单轴南北向跟踪(SNST)、单轴方位角跟踪(SAZT)和双轴跟踪(DAT),评估维度涵盖能量、㶲、经济性、环境影响、能经济学、㶲经济学和环境经济学,并结合风险评估。为预测跟踪系统的不确定性,该问题被求解5000次后,利用随机森林算法(R² ∼ 0.95)进行外推预测,模拟时间长达50000年,并采用蒙特卡洛模拟方法计算系统的不确定性。结果表明,双轴跟踪系统(DAT)在年发电量(3.21 GWh/yr)、㶲效率(20.5%)、环境效益(2016 吨/年)、㶲经济性(72 kWh/$)和环境经济性(20162 美元)方面均表现最优;而固定结构(FS)则具有最低的平准化度电成本(51 美元/MWh)和最短的投资回收期(14年)。此外,项目失败概率介于18.6%至34.8%之间,其中固定结构(FS)的失败概率最低。总体而言,折衷解分析结果显示,各类跟踪系统的优先顺序如下:DAT > SAZT > SNST > FS > SEWT。

English Abstract

Abstract As the photovoltaic industry continues to expand, the low efficiency of fixed systems highlights the need for improved solutions, with tracking systems emerging as a viable option to enhance energy generation. Accordingly, this study proposes a novel framework based on compromise solution, in which four common solar tracking types including single-axis east–west tracking (SEWT), single-axis north–south tracking (SNST), single-axis azimuth tracking (SAZT), and dual-axis tracking (DAT) are evaluated from energy, exergy, economic, environmental, energoeconomic, exergoeconomic, and enviroeconomic along with risk assessment. To predict the uncertainty of tracking systems, the problem is solved 5000 times, and then predicted 50,000 years using the Random Forest Algorithm (R 2 ∼ 0.95), and the Monte Carlo simulation is employed to calculate the uncertainty of systems. The results showed the highest electricity generation (3.21 GWh/yr), exergy efficiency (20.5 %), environmental benefit (2016 ton/yr), exergoeconomic (72 kWh/$), and enviroeconomic (20162 $) belong to the DAT, while the lowest levelized cost of electricity (51 $/MWh) and payback period (14 years) are associated with the fixed structure (FS). Also, the probability of project failure is 18.6–34.8 %, with the lowest one related to FS. In general, the compromise solution showed that the priority of tracking systems is as follows: DAT > SAZT > SNST > FS > SEWT.
S

SunView 深度解读

该研究对阳光电源SG系列光伏逆变器产品线具有重要指导意义。双轴跟踪系统虽发电量最优(3.21GWh/年)但投资回收期长,单轴方位跟踪(SAZT)作为折中方案更具商业价值。建议将机器学习算法集成到iSolarCloud平台,实现跟踪系统的7E维度智能评估与风险预测,结合MPPT优化技术动态匹配不同跟踪模式,为客户提供全生命周期经济性分析。该框架可应用于光储一体化项目,通过ST系列储能系统平抑跟踪系统的不确定性风险,提升整体投资回报率。