← 返回
基于野外光谱辐射测量与可解释性机器学习的干旱区光伏电站地表反照率评估
Surface albedo evaluation in an arid-region photovoltaic power plant through field spectral radiometry and explainable machine learning
| 作者 | Xiaoqing Gaoa · Jiang Ying · Zhimin Yang · Yi Liu · Junxia Jiang · Zhenchao Lia |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | PV-induced [albedo](https://www.sciencedirect.com/topics/earth-and-planetary-sciences/albedo "Learn more about albedo from ScienceDirect's AI-generated Topic Pages") reduction dominates in NIR/VIS spectra. |
语言:
中文摘要
摘要 随着对光伏(PV)发电引起的气候效应研究不断深入,数值模拟已成为不可或缺的研究手段。然而,现有的参数化方案仍存在局限性,尤其是在地表反照率的表征方面。为弥补这一不足,本研究基于2020年4月至8月在新疆五家渠一处PV-戈壁复合下垫面获取的观测数据,分析了光谱辐射特征及地表反照率的变化规律。结果表明,入射太阳辐射在光谱上呈现近红外(NIR)>可见光(VIS)>紫外(UV)的层级结构,其对总短波辐射的贡献率分别为57.4%、38.4%和4.1%。各光谱波段均表现出受天气过程驱动的同步波动特征。PV-戈壁复合下垫面的反照率显著低于自然戈壁地形,其加权平均反照率值分别为:全球辐射(GR)0.139、NIR波段0.148、VIS波段0.130、UV波段0.081。基于机器学习的归因分析识别出太阳高度角(θ)、相对湿度(RH)和光伏组件温度(PT)是影响反照率动态变化的主要驱动因子。包含上述三个因子的参数化模型在不同天气情景和季节转换过程中均表现出较高的模拟精度,为改进地球物理模型中光伏反照率的表达提供了多机制耦合的理论框架,有助于更准确地模拟光伏电站与气候之间的相互作用。
English Abstract
Abstract As research on photovoltaic (PV)-induced climate effects continues to deepen, numerical simulation has become an essential approach. However, existing parameterization schemes remain limited, particularly in the representation of surface albedo. To address this gap, this study investigates the characteristics of spectral radiation and surface albedo variations based on observational data from April to August 2020 at a PV-Gobi composite surface in Wujiaqu, Xinjiang. The results demonstrate that the incident solar radiation exhibits a spectral hierarchy of near-infrared (NIR) > visible (VIS) > ultraviolet (UV), with respective contributions of 57.4 %, 38.4 %, and 4.1 % to the total shortwave radiation. All spectral bands showed synchronized fluctuations driven by weather processes. The albedo of the PV-Gobi composite surface was significantly lower than that of natural gobi terrain, with weighted mean values of 0.139 (global radiation, GR), 0.148 (NIR), 0.130 (VIS), and 0.081 (UV). Machine learning-based interpretation identified solar elevation angle (θ), relative humidity (RH), and photovoltaic module temperature (PT) as the dominant drivers of albedo dynamics. A parameterization model incorporating these three factors achieved high accuracy across weather scenarios and seasonal transitions, providing a multi-mechanism coupled framework to optimize PV albedo representation in geophysical models for simulating PV power plant-climate interactions.
S
SunView 深度解读
该研究通过光谱辐射观测和机器学习建立的地表反照率参数化模型,对阳光电源SG系列光伏逆变器的MPPT优化算法具有重要参考价值。研究揭示的太阳高度角、相对湿度、组件温度三因素耦合机制,可用于优化iSolarCloud平台的发电功率预测模型,提升预测精度。特别是光伏-戈壁复合地表反照率特性(0.139)显著低于自然地表,为大型地面电站的微气候效应评估和智能运维策略提供数据支撑,助力提升系统发电效率和长期稳定性。