← 返回
储能系统技术 储能系统 机器学习 ★ 4.0

通过并发多帧处理提升边缘设备实时目标检测性能

Improving Performance of Real-Time Object Detection in Edge Device Through Concurrent Multi-Frame Processing

作者 Seunghwan Kim · Changjong Kim · Sunggon Kim
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 机器学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 计算机视觉技术 物联网边缘设备 实时目标检测 并发多帧处理方案 性能提升
语言:

中文摘要

随着机器学习和AI算法性能和精度提升,采用计算机视觉技术解决自动驾驶和AI机器人等问题的需求增加。IoT和边缘设备因小巧且具有足够计算能力被广泛采用。然而,IoT和边缘环境相比传统服务器环境有严格限制,常受限于低计算和内存资源以及有限供电。本文提出实时目标检测算法的并发多帧处理方案。首先将视频分割为单独帧并根据设备核心数分组,然后为每个核心分配一组帧执行目标检测,实现多帧并行检测。在Nvidia Jetson Orin Nano边缘设备上实施该方案到YOLO算法,使用MS-COCO、ImageNet、PascalVOC等真实数据集。评估结果显示所提方案可提升运行时间、内存消耗和功耗分别达445%、69%和73%,相比最先进模型优化提升2.10倍。

English Abstract

As the performance and accuracy of machine learning and AI algorithms improve, the demand for adopting computer vision techniques to solve various problems, such as autonomous driving and AI robots, increases. To meet such demand, IoT and edge devices, which are small enough to be adopted in various environments while having sufficient computing capabilities, are being widely adopted. However, as devices are utilized in IoT and edge environments, which have harsh restrictions compared to traditional server environments, they are often limited by low computational and memory resources, in addition to the limited electrical power supply. This necessitates a unique approach for small IoT devices that are required to run complex tasks. In this paper, we propose a concurrent multi-frame processing scheme for real-time object detection algorithms. To do this, we first divide the video into individual frames and group the frames according to the number of cores in the device. Then, we allocate a group of frames per core to perform the object detection, resulting in parallel detection of multiple frames. We implement our scheme in YOLO (You Only Look Once), one of the most popular real-time object detection algorithms, on a state-of-the-art, resource-constrained IoT edge device, Nvidia Jetson Orin Nano, using real-world video and image datasets, including MS-COCO, ImageNet, PascalVOC, DOTA, animal videos, and car-traffic videos. Our evaluation results show that our proposed scheme can improve the diverse aspect of edge performance and improve the runtime, memory consumption, and power usage by up to 445%, 69%, and 73%, respectively. Additionally, it demonstrates improvements of 2.10 over state-of-the-art model optimization.
S

SunView 深度解读

该并行处理技术可应用于阳光电源智能巡检边缘设备。阳光无人机和巡检机器人需要实时处理大量视频流进行组件缺陷检测。该多帧并行方案可部署在阳光巡检设备的边缘计算单元,显著提升检测速度和能效。在大型光伏电站中,该技术可使单台巡检设备覆盖更大区域,缩短巡检周期。结合阳光SG逆变器的边缘AI能力,该并行处理方法可优化组串级故障诊断,实现热斑、隐裂等缺陷的实时识别。通过降低功耗和提升处理效率,该技术延长巡检设备续航时间,提高光伏电站智能运维水平和经济性。