← 返回
超参数优化自动化机器学习与可解释人工智能模型的对比分析
Comparative Analysis of Automated Machine Learning for Hyperparameter Optimization
| 作者 | Muhammad Salman Khan · Tianbo Peng · Hanzlah Akhlaq · Muhammad Adeel Khan |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 自动化机器学习 超参数优化 超高性能混凝土梁 SHAP解释法 Optuna框架 |
语言:
中文摘要
人工智能AI日益应用于解决复杂现实问题。AI最重大挑战之一在于为给定任务选择和微调最优算法。自动化机器学习AutoML模型作为应对这一挑战的有前途解决方案出现,通过系统探索超参数空间高效识别最优配置。本研究通过对AutoML框架进行超参数优化综合对比分析以及评估各种可解释性技术提升模型可解释性有效性,解决当前文献中的关键空白。为此,选择随机森林RF作为基础模型并与九种不同AutoML框架集成,即随机搜索RS、网格搜索GS、Hyperopt、TPOT、Optuna、GP Minimize、Forest Minimize、GBRT Minimize和Dummy Minimize。研究聚焦预测超高性能混凝土UHPC梁和U形梁的极限弯矩承载力。此外,将SHAP见解与替代可解释性方法LIME、PDP和sklearn排列重要性排名比较,检验使用最佳AutoML模型对UHPC梁极限弯矩承载力预测的各参数贡献。研究发现Optuna始终优于其对手,达到最高预测精度和最低计算训练时间。研究还突显SHAP在提供详细一致可操作见解方面的优越性。
English Abstract
Artificial intelligence (AI) has been increasingly applied to solve complex real-world problems. One of the most significant challenges in AI lies in selecting and fine-tuning the optimal algorithm for a given task. Automated Machine Learning (AutoML) models have emerged as a promising solution to address this challenge by systematically exploring hyperparameter spaces to identify optimal configurations efficiently. This study addresses critical gaps in the current literature by conducting a comprehensive comparative analysis of AutoML frameworks for hyperparameter optimization and evaluating the effectiveness of various explainability techniques for enhancing model interpretability. For this purpose, Random forest (RF) is selected as the base model and integrated with nine different AutoML frameworks, namely Random search (RS), Grid search (GS), Hyperopt, TPOT, Optuna, GP Minimize, Forest Minimize, GBRT Minimize, and Dummy Minimize. The study focuses on predicting the ultimate moment capacity of Ultra-High-Performance Concrete (UHPC) beams and U-shaped girders. Furthermore, the insights from SHapley Additive exPlanations (SHAP) are also compared with those derived from alternative explainability methods, including Local interpretable model-agnostic explanations (LIME), partial dependence plots (PDP), and sklearn permutation importance rankings to examine the contributions of individual parameters to the ultimate moment capacity predictions of UHPC beams using the best-performing AutoML model. The findings demonstrate that Optuna consistently outperforms its counterparts, achieving the highest predictive accuracy and the lowest computational training time. The findings also highlight SHAP’s superiority in offering detailed, consistent, and actionable insights, making it the preferred method for both global feature importance and individual feature analysis in high-stakes engineering applications.
S
SunView 深度解读
该自动化机器学习技术对阳光电源数据分析和优化具有重要应用价值。阳光iSolarCloud平台处理海量光伏储能运行数据,需要高效的机器学习模型开发工具。该研究的AutoML框架对比和Optuna优选结果可指导阳光优化云平台的预测模型,如光伏发电预测、电池寿命预测和故障诊断。在储能系统优化中,该超参数自动调优技术可加速阳光EMS算法开发,提升模型精度和训练效率。该研究强调的SHAP可解释性技术可应用于阳光智能诊断系统,解释AI决策过程,提升用户信任度。结合阳光储能大数据,该AutoML技术可推动数据驱动的产品优化和智能运维创新。