找到 1 条结果
超参数优化自动化机器学习与可解释人工智能模型的对比分析
Comparative Analysis of Automated Machine Learning for Hyperparameter Optimization
Muhammad Salman Khan · Tianbo Peng · Hanzlah Akhlaq · Muhammad Adeel Khan · IEEE Access · 2025年1月
人工智能AI日益应用于解决复杂现实问题。AI最重大挑战之一在于为给定任务选择和微调最优算法。自动化机器学习AutoML模型作为应对这一挑战的有前途解决方案出现,通过系统探索超参数空间高效识别最优配置。本研究通过对AutoML框架进行超参数优化综合对比分析以及评估各种可解释性技术提升模型可解释性有效性,解决当前文献中的关键空白。为此,选择随机森林RF作为基础模型并与九种不同AutoML框架集成,即随机搜索RS、网格搜索GS、Hyperopt、TPOT、Optuna、GP Minimize、Fore...
解读: 该自动化机器学习技术对阳光电源数据分析和优化具有重要应用价值。阳光iSolarCloud平台处理海量光伏储能运行数据,需要高效的机器学习模型开发工具。该研究的AutoML框架对比和Optuna优选结果可指导阳光优化云平台的预测模型,如光伏发电预测、电池寿命预测和故障诊断。在储能系统优化中,该超参数自...