← 返回
光伏发电技术 可靠性分析 机器学习 深度学习 ★ 5.0

基于卷积神经网络、小波神经网络与掩码多头注意力机制的全球辐照度预测模型

A Global Irradiance Prediction Model Using Convolutional Neural Networks, Wavelet Neural Networks, and Masked Multi-Head Attention Mechanism

作者 Walid Mchara · Lazhar Manai · Mohamed Abdellatif Khalfa · Monia Raissi · Salah Hannechi
期刊 IEEE Access
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 可靠性分析 机器学习 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 全球辐照度预测 混合框架CNN - WNN - MMHA 光伏系统 太阳能电动汽车 能源预测可靠性
语言:

中文摘要

准确预测全球辐照度对光伏系统尤其是太阳能电动汽车的能量管理至关重要。传统模型难以捕捉辐照数据中复杂的时空依赖性,导致在多变天气条件下预测精度受限。本文提出一种融合卷积神经网络(CNN)、小波神经网络(WNN)与掩码多头注意力(MMHA)机制的新型混合框架CNN-WNN-MMHA。CNN提取局部空间特征,WNN进行频域分解以捕获多尺度变化,MMHA建模时间依赖并编码位置信息。模型在突尼斯八年实测气候数据上训练与验证,实验表明其性能显著优于LSTM、BiLSTM和CNN-LSTM等先进方法,MAPE降低79%,在多种天气场景下具备更强泛化能力,有效提升太阳能车辆的能量预测精度与路径规划智能化水平,并可拓展至其他可再生能源系统。

English Abstract

Accurate prediction of global irradiance is critical for optimizing energy management in photovoltaic (PV) systems, particularly in solar-powered electric vehicles (ESVs). However, traditional models struggle to capture the complex spatial and temporal dependencies in irradiance data, limiting prediction accuracy under varying weather conditions. Existing approaches, including statistical methods, conventional machine learning models, and standalone deep learning techniques like LSTM, fail to integrate local features and long-term dependencies simultaneously, creating a need for more robust solutions. This paper introduces a novel hybrid framework, CNN-WNN-MMHA, that combines Convolutional Neural Networks (CNN), Wavelet Neural Networks (WNN), and a Masked Multi-Head Attention (MMHA) mechanism. The CNN extracts spatial and local features, WNN performs frequency decomposition to capture multi-scale variations, and MMHA models temporal dependencies while encoding positional information.The model is trained and evaluated on a real-world climatic dataset from Tunisia, collected over eight years. Experimental results demonstrate that the proposed model significantly outperforms state-of-the-art methods such as LSTM, BiLSTM, and CNN-LSTM, achieving a 79% reduction in MAPE and superior generalization performance across diverse weather scenarios.This advancement enhances energy forecasting reliability, supporting smarter route planning and energy optimization for solar-powered vehicles, with potential extensions to other renewable energy systems.
S

SunView 深度解读

该混合深度学习辐照度预测模型对阳光电源多条产品线具有重要应用价值。在SG系列光伏逆变器中,可优化MPPT算法的前瞻性控制,提前调整功率跟踪策略;在PowerTitan储能系统中,精准的辐照度预测可优化充放电调度策略,提升光储协同效率;在iSolarCloud智能运维平台中,该模型可增强预测性维护能力,提前预判发电功率波动并优化电网调度响应。CNN-WNN-MMHA架构对多尺度时空特征的捕获能力,可显著提升阳光电源在复杂气象条件下的功率预测精度,降低79%的预测误差将直接改善储能系统的经济性和电网友好性,为构网型GFM控制提供更可靠的功率预测输入。