← 返回
基于机器学习与SCAPS-1D的RbGeBr3钙钛矿太阳能电池性能预测与验证
Machine learning and SCAPS-1D based prediction and validation of RbGeBr3 perovskite solar cell
| 作者 | Namrata A.Tukadiy · Zarna D.Ponkiy · Nikunj Joshi · Deepak Upadhyay · Prafulla K.Jh |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | GaN器件 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The dataset of organic–inorganic materials from MaterialsZone repository has been analyzed. |
语言:
中文摘要
本研究利用机器学习(ML)模型预测RbGeBr3钙钛矿太阳能电池的性能,并通过太阳能电容模拟器(SCAPS-1D)进行验证。采用来自MaterialsZone数据库的基于密度泛函理论(DFT)生成的数据集,其中包含有机–无机卤化物钙钛矿材料的数据,结合基于Scikit-learn的模型及关联规则挖掘方法进行分析。共评估了443种太阳能电池结构,使用九个关键输入特征来预测能量转换效率(PCE)。在所采用的多种模型中,包括随机森林(RF)、决策树(DT)、K近邻算法(KNN)、梯度提升回归(GBR)和极端梯度提升(XGB),XGB模型表现最优。通过对超参数调优进一步提升模型精度,使用XGB模型预测Al/FTO/SnS2/RbGeBr3/P3HT/Ni器件结构的PCE可达30.67%,测试集的均方根误差(RMSE)为1.13%,相关系数(R²)为0.877。SCAPS-1D的仿真验证结果与机器学习预测高度一致,获得31.76%的PCE。上述结果证实了RbGeBr3在高效钙钛矿太阳能电池(PSC)中的应用潜力,凸显了基于机器学习的材料筛选与理论建模相结合在下一代钙钛矿太阳能电池设计中的协同作用。
English Abstract
Abstract This study predicts the solar cell performance of RbGeBr 3 perovskite using Machine Learning (ML) models and validated via the solar capacitance simulator (SCAPS-1D). A DFT-derived data set from the MaterialsZone repository, containing organic–inorganic halide perovskites data, was analyzed using Scikit-learn-based models and association rule mining. A total of 443 solar cell configurations were evaluated using nine key input features to predict power conversion efficiency (PCE). Among various models which includes Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Gradient Boosting Regression (GBR), and Extreme Gradient Boost (XGB) -the XGB model performed best. Hyperparameter tuning via improved model accuracy predicting a PCE of 30.67 % for the solar cell using the XGB model shows 1.13 % of test root mean square error (RMSE) and 0.877 of test correlation coefficient ( R 2 ) for Al/FTO/SnS 2 /RbGeBr 3 /P3HT/Ni device structure. SCAPS-1D validation closely matched ML predictions, achieving PCE of 31.76 %. These findings confirm the potentiality of RbGeBr 3 for highly efficient perovskite solar cell (PSC), underscoring the synergy between ML-based screening and theoretical modeling for the design of next-generation PSCs.
S
SunView 深度解读
该研究通过机器学习预测RbGeBr3钙钛矿电池效率达31.76%,为阳光电源SG系列光伏逆变器的MPPT算法优化提供新思路。ML模型可应用于iSolarCloud平台,实现组件性能预测性维护。钙钛矿高效率特性要求逆变器具备更宽电压范围和更精准功率追踪能力,可推动1500V系统和三电平拓扑技术升级。建议将ML预测模型集成到智能运维系统,提升光伏电站发电效率评估准确性,为下一代高效组件配套方案提供数据支撑。