← 返回
可解释性机器学习揭示杂化钙钛矿太阳能电池的光电转换效率
Interpretable machine learning insights of power conversion efficiency for hybrid perovskites solar cells
| 作者 | Yudong Shi · Jiansen Wen · Cuilian Wen · Linqin Jiang · Bo Wu · Yu Qiu · Baisheng Sa |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 290 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | GaN器件 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An interpretable machine learning approach is shown for hybrid [perovskite](https://www.sciencedirect.com/topics/chemical-engineering/perovskite "Learn more about perovskite from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
摘要 杂化有机-无机钙钛矿(HOIPs)太阳能电池因其高能量转换效率、易于制备以及低成本等优势,在光伏领域展现出广阔的应用前景。随着人工智能的蓬勃发展,机器学习(ML)近年来已被用于新型HOIPs材料的设计。然而,由于现有机器学习模型缺乏可解释性,其在HOIPs材料设计中的实际应用受到较大限制。本文提出一种数据驱动的可解释性机器学习方法,用于提取影响基于HOIPs太阳能电池功率转换效率(PCE)的通用且简洁的描述符。研究突出提出了两个由易于获取参数构成的描述符,可用于准确预测PCE,其预测性能优于常用的带隙(Eg)描述符。特别地,本文还提出了适用于高通量筛选HOIPs材料的通用准则,以加速识别具有高PCE性能的HOIPs基太阳能电池。本工作为利用数据驱动的可解释性机器学习方法实现高效HOIPs基太阳能电池的快速精准筛选开辟了新途径。
English Abstract
Abstract Hybrid organic–inorganic perovskites (HOIPs) solar cells have presented broad application prospects in the photovoltaic field due to their high energy conversion efficiency, ease of preparation, and low production costs. With the flourishing development of artificial intelligence, machine learning (ML) has been recently used for novel HOIP designs. However, the practical application of ML models for the designing of HOIPs is hampered mainly due to the lack of interpretability. Herein, a data-driven interpretable ML approach is introduced to distill the universal simple descriptors for the power conversion efficiency (PCE) of HOIPs-based solar cells. It is highlighted that two descriptors consist of easily obtained parameters are proposed to accurately predict PCE, which are superior to the commonly used descriptor band gap ( E g ). Remarkably, universal criterions for the high-throughput screening of HOIPs are proposed to accelerate the screening of HOIPs-based solar cells with high PCE performance. This work paves the way toward rapid and precise screening of efficient HOIPs-based solar cells using a data-driven interpretable ML approach.
S
SunView 深度解读
该可解释机器学习技术为阳光电源光伏逆变器研发提供重要启示。通过数据驱动方法快速筛选高效钙钛矿电池,可优化SG系列逆变器的MPPT算法适配性。研究中提出的简化描述符预测方法,可应用于iSolarCloud平台的组件性能预测模型,实现电站级效率优化。结合GaN功率器件特性,该方法有助于加速新型光伏材料与逆变器拓扑的协同设计,提升系统转换效率,支撑阳光电源在新一代光伏技术领域的前瞻布局。