← 返回
光伏发电技术 GaN器件 机器学习 ★ 5.0

基于数据挖掘与机器学习的钙钛矿及有机太阳能电池最优材料搜索

Data-mining and machine learning based search for optimal materials for perovskite and organic solar cells

语言:

中文摘要

摘要 提出了一种基于数据挖掘的方法,用于搜索适用于光伏应用的有机化合物。从含有较低空穴转移重组能的有机化合物数据库中筛选有机半导体材料。选取三种聚合物给体作为标准结构,用于在数据库中搜索相似材料。采用机器学习预测能级,作为筛选最佳光伏材料的判据。使用分子指纹对机器学习模型进行训练。共尝试了40多种机器学习模型,其中随机森林模型表现最优(训练集和测试集的决定系数r-squared分别为0.800和0.609)。该机器学习模型被用于预测新材料的能级。同时预测了所选有机半导体材料的合成可及性,所有这些半导体均易于合成,其合成可及性(SA)评分均低于6。

English Abstract

Abstract A data mining-based approach is introduced to search the organic compounds for Photovoltaics applications. Organic semiconductors are search from a database of organic compounds having lower reorganization energy for hole transfer. Three polymer donors are selected as a standard structure to search similar materials from database. Energy levels are predicted using machine learning as a screening criterion for the selection of best materials for photovoltaics applications. Fingerprints are used for training the machine learning models. More than 40 machine learning models are tried, random forest has appeared as a best model (r-squared of 0.800 and 0.609 for training and test set, respectively). This machine learning model is used to predict the energy levels of new materials. Synthetic accessibility of selected organic semi-conductors is also predicted, all these semi-conductors are straight-forward to synthesize. Their Synthetic accessibility (SA) score is less than 6.
S

SunView 深度解读

该机器学习材料筛选技术对阳光电源SG系列光伏逆变器及组件选型具有重要参考价值。通过数据挖掘优化钙钛矿和有机太阳能电池材料,可提升光伏组件转换效率,直接增强逆变器MPPT优化效果。随机森林模型预测能级的方法可应用于iSolarCloud平台,建立材料性能数据库,为1500V高压系统的组件匹配提供智能决策支持。合成可达性评分机制也为供应链优化提供量化依据,助力降本增效。