← 返回
光伏发电技术 GaN器件 DAB 机器学习 ★ 5.0

基于机器学习辅助设计具有较低重组能的聚合物用于有机太阳能电池中的给体和受体材料

Machine learning assisted designing of polymers with lower reorganization energies for the possible use as donor and acceptors for organic solar cells

语言:

中文摘要

摘要 本研究提出了一种基于机器学习(ML)技术精确预测重组能描述符的新方法,这些描述符对于优化有机太阳能电池的性能至关重要。传统方法在准确估算这些描述符方面存在局限性,从而影响了有机光伏器件的可靠性和效率。所采用的基于人工智能(AI)的方法为理解这些描述符提供了定量依据,显著增强了预测和优化有机太阳能电池效率的能力。本研究利用断裂逆向合成有趣化学子结构(BRICS)方法系统地生成了新型聚合物。通过AI驱动的预测模型对电子和空穴重组能进行了预测,揭示了其常见的取值范围和分布规律。本研究展示了AI驱动方法在高性能有机光伏材料设计与开发中的巨大潜力,有望推动可再生能源技术取得突破性进展。

English Abstract

Abstract This study presents a novel method for accurate prediction of reorganization energy descriptors which are critical for optimizing the performance of organic solar cells by employing machine learning (ML) based techniques. Traditional methodologies have drawbacks in accurately estimating these descriptors, which affects the dependability and efficiency of organic photovoltaic devices. The engaged AI-based methodology offers a quantitative understanding of these descriptors, which greatly improves capacity to predict and optimize the efficiency of organic solar cells. Novel polymers were systematically generated using the Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) approach. Electron and hole rearrangement energies were predicted using AI-driven predictive models, revealing common ranges and distribution patterns. This study has demonstrated how AI-driven approaches have the potential to transform high-performance organic photovoltaic design and development, leading to breakthroughs in renewable energy technologies.
S

SunView 深度解读

该机器学习辅助有机光伏材料设计研究对阳光电源具有前瞻性参考价值。虽然当前SG系列逆变器主要适配晶硅组件,但研究中的AI驱动材料优化方法论可迁移至功率器件领域:通过机器学习预测SiC/GaN器件的载流子重组特性,优化ST系列PCS和三电平拓扑中的开关损耗。BRICS分子设计思路亦可启发模块化电路拓扑创新。建议算法团队关注其重组能预测模型,探索在iSolarCloud平台集成材料-器件协同仿真能力,为下一代宽禁带半导体应用提供数据驱动的设计工具链。