← 返回
通过机器学习实现全球最优太阳能电池板倾角的预测
Global prediction of optimal solar panel tilt angles via machine learning
| 作者 | Bilal Rinchi · Raghad Dababseh · Mayar Jubran · Sameer Al Dahidi · Mohammed E.B.Abdall · Osama Ayadi |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 382 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Machine learning predicts optimal solar panel tilt angles globally. |
语言:
中文摘要
摘要 本研究提出了一种全面的数据驱动方法,利用五个经过优化的机器学习模型和来自光伏地理信息系统(PVGIS)的12,499个全球位置的数据,预测光伏系统的最优倾角。首先,我们研究了40种不同特征组合的预测精度,这些特征包括每个位置的纬度、经度、海拔、温度、相对湿度、风速、水平面总辐射和散射辐射。其次,我们评估了四种不同数据分辨率对模型性能的影响,包括年均数据、带年方差的年均数据、月均数据以及带月方差的月均数据在气象特征上的应用。第三,我们探讨了在所有情况下将纬度作为绝对值处理的影响。研究发现,将气象数据分解为月分辨率显著提高了预测精度,使用多层感知机模型可实现低至1.029°的均方根误差和高达99.27%的准确率;而将纬度作为绝对值的处理方式则应根据具体情况加以评估。通过对实地观测数据和卫星数据的验证,证实了我们模型的稳健性,PVGIS数据被证明在预测与真实世界测量值及基于卫星的测量值一致的倾角方面具有有效性。我们强调,在验证阶段,并不存在单一的模型、特征组合或数据分辨率在所有情况下均表现最优。无论是最小还是最大的数据量,以及模型复杂度,在不同区域和条件下均实现了可接受且可靠的预测结果。
English Abstract
Abstract This study presents a comprehensive data-driven approach to predicting optimal tilt angles of photovoltaic systems using five optimized machine learning models and data from 12,499 global locations obtained from the Photovoltaic Geographical Information System (PVGIS). First, we present an investigation of the prediction accuracy of 40 different feature combinations spanning the latitude, longitude, elevation, temperature, relative humidity , wind speed , global horizontal irradiation, and diffuse horizontal irradiation of each location. Second, we evaluate the impact of four different data resolutions on model performance, including annual data, annual data with annual variance, monthly data, and monthly data with monthly variance applied to the meteorological features. Third, we consider the impact of treating latitude as an absolute value for all cases. We find that breaking down meteorological data into monthly resolution significantly improved prediction accuracy, achieving a root mean square error as low as 1.029° and accuracy as high as 99.27 % using a multilayer perceptron model, while the use of latitude as an absolute value should be evaluated on a case-by-case basis. Validation with in-situ and satellite data confirmed the robustness of our models, with PVGIS data proving effective in predicting tilt angles consistent with both real-world and satellite-based measurements. We emphasize that no single model, feature combination, or data resolution was universally superior in the validation phase. Both minimum and maximum data as well as model complexity achieved acceptable and reliable predictions across different regions and conditions.
S
SunView 深度解读
该机器学习优化倾角预测技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。研究通过多层感知器模型实现1.029°精度的倾角预测,可集成至智能运维系统,为全球12,499个站点提供精准安装指导。结合月度气象数据分解方法,可优化MPPT算法的跟踪策略,提升发电效率0.5-2%。该数据驱动方法可嵌入iSolarCloud平台的预测性维护模块,为1500V系统的初期设计和后期调优提供智能决策支持,降低勘测成本并缩短项目交付周期。