找到 166 条结果
基于Transformer扩散模型的风速时空概率预测
Spatio-Temporal Probabilistic Forecasting of Wind Speed Using Transformer-Based Diffusion Models
Hao Liu · Junqi Liu · Tianyu Hu · Huimin Ma · IEEE Transactions on Sustainable Energy · 2025年7月
时空风速预测对提升能源转换效率与优化资源配置具有重要意义。现有方法在捕捉复杂的时空依赖关系及适应风速动态变化方面存在不足。为此,本文提出概率时空扩散Transformer(PSTDT)模型,结合去噪扩散生成模型与Transformer的时空建模优势。该模型引入双空间注意力模块以捕获静态位置关系与动态空间依赖,并设计双阶段时间模块建模周期间依赖与自回归特征,辅以时间自适应层归一化机制提升预测稳定性与精度。实验表明,PSTDT在多个数据集上显著优于现有方法,连续排序概率分数降低8%–20%,平均绝对...
解读: 该时空风速概率预测技术对阳光电源储能系统与智能运维平台具有重要应用价值。在PowerTitan大型储能系统中,精准的风速预测可优化风储协同控制策略,提升ST系列储能变流器的充放电调度精度,降低8%-20%的预测误差可显著改善储能系统的能量管理效率。该Transformer扩散模型的时空建模能力可集成...
基于多空间注意力LSTM的时序环境感知光伏性能预测框架
Temporal environment informed photovoltaic performance prediction framework with multi-spatial attention LSTM
Dou Hong · Fengze Li · Jieming Ma · Ka Lok Man 等6人 · Solar Energy · 2025年1月 · Vol.296
摘要 预测光伏(PV)系统的性能对于优化可再生能源利用至关重要。然而,传统的时间序列方法仅关注时间模式,忽略了环境变化的影响,而诸如局部遮挡等动态条件进一步增加了功率预测的复杂性。为应对由遮挡引起的变化,本文提出了一种时序与环境感知预测(TEIP)框架,该框架通过一种新颖的多空间注意力LSTM(MSAL)网络,动态整合时序与环境数据,从而提升光伏功率预测精度。该框架利用TE矩阵捕捉随时间变化的结构化环境条件,包括由局部遮挡引起的变异性。所设计的双分支MSAL模型通过空间特征提取对环境数据进行独特...
解读: 该TEIP框架的多空间注意力LSTM架构对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。其时空环境矩阵建模方法可增强MPPT算法在局部遮挡场景下的动态响应能力,R²达0.952的预测精度可显著提升ST储能系统的充放电策略优化。建议将该框架集成至智能运维平台,结合虚拟同步发电...
一种考虑极端降雨时空特性的混合数据与知识驱动的分布式光伏系统风险预测方法
A Hybrid Data and Knowledge Driven Risk Prediction Method for Distributed Photovoltaic Systems Considering Spatio-Temporal Characteristics of Extreme Rainfalls
Yuxuan Wang · Bin Zhou · Cong Zhang · Siu Wing Or 等6人 · IEEE Transactions on Industry Applications · 2024年7月
本文提出一种结合基于知识与数据驱动的电气安全风险(ESR)预测方法,该方法考虑了极端降雨的时空特征,旨在识别因内涝导致高停机风险的分布式光伏系统(DPVS)。首先,建立了分布式光伏系统内涝的二维水动力偏微分模型,以推导极端降雨在时空异质性条件下淹没深度的动态分布。开发了一种基于快速图像分割的风险分区算法,以提取暴雨及内涝的非均匀空间分布和时间波动性,从而将分布式光伏系统划分为具有不同电气安全风险程度的多个区域。然后,从数学角度提出了一种基于知识的、考虑淹没深度和寄生电容的泄漏电流分析方法,以揭示...
解读: 从阳光电源的业务视角来看,这项针对分布式光伏系统极端降雨风险预测的研究具有重要的工程应用价值。当前我国分布式光伏装机规模快速增长,但极端天气导致的系统停机和电气安全事故已成为影响发电效率和资产安全的关键因素。该研究提出的知识与数据混合驱动方法,通过二维流体动力学模型模拟积水深度的时空演化,并结合漏电...
基于OWT-STGradRAM的超短期时空风速预测
Ultra-Short-Term Spatio-Temporal Wind Speed Prediction Based on OWT-STGradRAM
Feihu Hu · Xuan Feng · Huaiwen Xu · Xinhao Liang 等5人 · IEEE Transactions on Sustainable Energy · 2025年2月
考虑风电场中风机站点的方向与距离特征有助于提升风电功率预测精度。本文提出一种基于正交风向变换时空梯度回归激活映射(OWT-STGrad-RAM)的深度学习时空预测方法。该模型将风电场编码为图像,各风机作为图像中的点,通过时空融合卷积网络集成风速、温度和气压等多源数据进行特征融合与预训练,构建特征数据集。利用OWT消除不同主导风向的影响,结合STGrad-RAM刻画风机节点间的方位与距离关系,增强空间特征的可解释性,并用于风速预测。实验结果表明,所提方法在预测精度上显著优于对比模型。
解读: 该风速预测技术对阳光电源的储能和风电产品具有重要应用价值。OWT-STGradRAM模型通过深度学习实现的高精度风速预测,可优化ST系列储能变流器的调度策略和PowerTitan储能系统的容量配置。在风电场应用中,该技术可提升风电并网点功率预测精度,有助于改进储能系统的功率平滑控制和调频调峰性能。模...
DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络
DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting
Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu 等5人 · Applied Energy · 2025年1月 · Vol.378
准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间...
解读: 该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,...
用于储层计算的具有时序动力学的两端口光伏神经形态器件
Two-terminal photovoltaic neuromorphic device with temporal dynamics for reservoir computing
Hong Fang · Jie Wang · Shuanger Ma · Le Zhao 等6人 · Applied Physics Letters · 2025年1月 · Vol.126
提出了一种基于光伏效应的两端口神经形态器件,具备类脑突触的时序动力学特性,可用于储层计算。该器件利用光生载流子的动力学响应模拟神经元的时间依赖行为,无需传统三端结构即可实现非线性激活与记忆功能。实验结果表明,该器件在处理时间序列任务中表现出良好的性能,为低功耗、高集成度的神经形态计算系统提供了新思路。
解读: 该光伏神经形态器件技术为阳光电源智能化产品提供了创新思路。其两端口结构和时序动力学特性可应用于:1)SG系列逆变器的MPPT算法优化,利用储层计算实现更快速的光照变化响应和功率预测;2)ST储能系统的智能能量管理,通过时间序列处理提升负荷预测和充放电策略优化能力;3)iSolarCloud平台的边缘...
基于自适应特征提取与时间迁移建模的分布式光伏超短期功率预测
Ultra-Short Term Power Forecasting for Distributed PV Based on Adaptive Feature Extraction and Temporal Transfer Modeling
Boyu Liu · Yuqing Wang · Fei Wang · Ziqi Liu 等6人 · IEEE Transactions on Industry Applications · 2025年8月
准确的分布式光伏发电功率预测对于优化电网运行、提高经济效益以及促进新能源融合至关重要。然而,现有的分布式光伏发电功率预测方法面临着若干挑战:1)卫星云图可为缺乏专业气象测量的分布式光伏提供数据支持,但云图特征建模方法往往会忽略重要特征;2)季节变化和多变的气候条件会导致光伏输出特性在时间分布上产生变化,当数据分布发生变化时,训练好的预测模型表现不佳,导致泛化能力不足。为解决这些问题,本文提出了一种基于自适应特征提取和时间迁移建模的分布式光伏区域超短期功率预测方法。该方法将卷积神经网络的空间特征捕...
解读: 该自适应特征提取与时间迁移建模技术对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。超短期功率预测可直接集成至云平台的智能诊断模块,通过自适应机制实时提取气象数据与历史出力特征,结合时间迁移学习捕捉不同天气模式下的功率波动规律,为分布式光伏电站提供15分钟至4小时级精...
时空特征增强的多类型可再生能源与负荷不确定性功率跟踪预测框架
Spatio-temporal feature amplified forecasting framework for uncertain power tracking of multitype renewable energy and loads
Yanli Liu · Ziwen Jia · Liqi Liu · Applied Energy · 2025年1月 · Vol.400
摘要 多类型可再生能源与负荷(如光伏、风电和电动汽车)的集成显著增加了电力供需两侧的不确定性,因此需要精确的预测技术以维持电网的安全稳定运行。然而,复杂的时空特征给现有预测方法带来了挑战,使其难以准确、及时地跟踪不确定性功率的瞬时变化。为此,本文提出了一种时空特征增强(STFA)预测框架,该框架可无缝嵌入当前先进的深度学习算法中。首先,构建了一个时空特征融合模块,逐步结合相空间重构、位置编码和掩码机制,通过一系列重组步骤增强时空特征,提升模型对不确定性波动的理解能力,从而支持训练过程。其次,在深...
解读: 该时空特征增强预测框架对阳光电源多条产品线具有重要应用价值。针对光伏SG系列逆变器,可通过精准预测辐照波动优化MPPT算法响应速度;对ST系列储能变流器和PowerTitan系统,能提升功率调度精度,降低电池循环损耗;在充电桩业务中可预测EV负荷峰谷,优化充电策略。该框架的自适应动态加权损失函数特别...
通过特征空间匹配分析解释基于时空相关性的LASSO回归模型用于风电功率预测
Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting
Yongning Zhao · Yuan Zhao · Haohan Liao · Shiji Pan 等5人 · Applied Energy · 2025年1月 · Vol.380
摘要 解释高性能的风电功率预测(WPF)模型对于推动更可信和更精确的预测方法至关重要。当前的研究主要集中在解释黑箱深度学习模型,而忽视了能够直接指示特征重要性的自解释模型,尽管这些模型无法阐明其背后的成因机制。基于最小绝对收缩与选择算子(LASSO)的自解释回归模型在WPF中表现出色。因此,探索其内在决策逻辑及其系数的实际意义,以提取有益的领域知识,具有重要意义。本文提出了一种解释框架,旨在阐明考虑时空相关性的LASSO回归模型在WPF中的决策逻辑。该框架包含四个主要组成部分:首先,建立一个时空...
解读: 该LASSO回归模型解释框架对阳光电源储能系统(ST系列PCS、PowerTitan)和iSolarCloud平台具有重要应用价值。通过时空相关性量化和特征匹配分析,可优化风储协同预测精度,提升储能系统功率调度策略。特征扰动分析方法可应用于多场站协同控制,识别关键影响因素如特征共线性、参考场站空间分...
考虑时空特征的自适应编解码模型用于分布式光伏电站短期功率预测
Adaptive Encoder-Decoder Model Considering Spatio-Temporal Features for Short-Term Power Prediction of Distributed Photovoltaic Station
Xun Dou · Yehang Deng · Shunjiang Wang · Tianfeng Chu 等6人 · IEEE Transactions on Industry Applications · 2024年1月
考虑到运维成本和技术的影响,分布式光伏电站群内部通常缺乏足够的气象观测设备。所采集气象数据的偏差以及软硬件限制导致的光伏功率数据误差,将直接导致模型预测精度降低。为解决这一问题,本文提出一种具有自适应时空编解码结构的分布式光伏功率短期预测方法,该方法能够适应不同数据输入和不同天气条件下的预测需求,提高预测精度。首先,利用随机森林算法(RF)和皮尔逊相关系数(PCC)对特征重要性进行排序,选取关键输入数据。其次,提出一种基于长短期记忆网络(LSTM)和时空注意力机制(STA)的时空特征编解码模型,...
解读: 从阳光电源的业务视角来看,这项基于自适应时空编解码器的分布式光伏短期功率预测技术具有显著的战略应用价值。 **业务协同价值:**该技术直击分布式光伏电站运维痛点——气象观测设备不足导致的预测精度下降问题。对于阳光电源的智慧能源管理系统而言,精准的功率预测是实现光储协同优化的基础。通过LSTM与时空...
STE-HOLNet:一种融合时空特征、动态概念漂移检测与自适应校正的风电功率预测新方法
STE-HOLNet: A new method for wind power prediction by integrating spatio-temporal features, dynamic concept drift detection and adaptive correction
Xiongfeng Zhao · Hai Peng Liu · Huaiping Jin · Xueping Shen 等5人 · Energy Conversion and Management · 2025年1月 · Vol.344
摘要 风电具有高度的不确定性和非线性,其时间序列通常表现出多周期性特征和概念漂移现象,这对实现高精度预测构成了重大挑战。本文提出了一种基于时空特征增强并结合动态在线校正机制的混合深度学习预测模型——时空增强型混合在线学习网络(Spatio-temporal Enhanced Hybrid Online Learning Network, STE-HOLNet),该模型通过改进的时间编码机制与深层网络结构紧密集成,实现了实时且高精度的风电功率预测。首先,引入一种改进的Time2Vec模块(E-Ti...
解读: 该风电功率预测技术对阳光电源储能系统具有重要应用价值。STE-HOLNet模型的概念漂移检测与自适应在线学习机制,可直接应用于ST系列PCS的功率预测模块,提升储能系统对风电波动的响应能力。其时空特征增强方法能优化iSolarCloud平台的预测性维护算法,降低RMSE达36.93%的性能可显著改善...
考虑时空相关性的非交叉分位数集群风电概率预测
Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation
Yuejiang Chen · Jiangwen Xiao · Yanwu Wang · Yunfeng Luo · Applied Energy · 2025年1月 · Vol.377
摘要 概率预测在电力系统的安全、稳定与运行中起着重要作用。传统的非参数概率预测分位数回归方法存在分位数交叉问题,此外,当前用于风电场集群功率预测的神经网络方法往往忽略了相关风电场之间的时空相关性。为解决上述问题,本文提出了一种考虑时空相关性的集群功率预测模型(CFM)。该模型采用一种新型的空间模式注意力机制(SPA),结合卷积神经网络与注意力机制的优势,以有效提取空间信息;同时,采用改进的多步分位数循环神经网络(IMQ-RNN)和改进的非交叉分位数回归(INCQR)策略作为CFM的输出模块,以生...
解读: 该非交叉分位数概率预测技术对阳光电源储能系统具有重要应用价值。论文提出的时空关联集群功率预测模型可直接应用于ST系列PCS和PowerTitan储能系统的智能调度策略优化。通过改进的多时域分位数循环神经网络,能够提升iSolarCloud平台对分布式风光储集群的预测精度,解决传统分位数回归的交叉问题...
基于领域对抗时序网络的跨区域分布式光伏系统功率预测可迁移框架
A Transferable Framework of PV Power Forecasting for Cross-Regional Distributed PV Systems Using Domain Adversarial Temporal Network
Jiaqi Qu · Qiang Sun · Zheng Qian · Hamidreza Zareipour 等5人 · IEEE Transactions on Industrial Informatics · 2025年7月
气象预报数据的缺失增加了分布式光伏系统输出功率预测的不准确性。特别是对于跨地区新建的分布式站点而言,基于数据驱动方法的建模受到历史数据不足的限制。因此,本文提出了一种基于迁移学习(TL)的领域对抗性时间网络(DATN)框架,该框架包含两个主要模块,即功率时间预测器和领域分类器。其中,考虑长短期记忆网络隐藏层权重的领域分类器旨在减少源领域和目标领域之间的分布差异。DATN采用了跨领域对抗性预训练与特定目标预测调整的迁移学习策略。在四项跨区域迁移实验中,对领域自适应方法和迁移策略的效果进行了比较。本...
解读: 从阳光电源的业务视角来看,这项基于域对抗时序网络的跨区域光伏功率预测技术具有显著的战略价值。该技术通过迁移学习框架解决了分布式光伏系统中气象数据缺失和新建站点历史数据不足的核心痛点,这与我司在全球范围内快速部署分布式光伏解决方案的业务需求高度契合。 对于我司的智能光伏逆变器和iSolarCloud...
非平稳GNNCrossformer:融合图信息的Transformer用于非平稳多变量时空风力发电预测
Non-stationary GNNCrossformer: Transformer with graph information for non-stationary multivariate Spatio-Temporal wind power data forecasting
Xinning Wuac1 · Haolin Zhanb1 · Jianming Hua · Ying Wangd · Applied Energy · 2025年1月 · Vol.377
摘要 风电功率的时空预测对于风电系统中多个风电场的并网运行具有重要意义。然而,由于多个风电场之间存在复杂的时空依赖关系,构建先进模型以在相互影响下实现精确的风电功率预测仍面临巨大挑战。此外,大多数现有模型在处理多变量且非平稳的风电场功率数据的长期预测时表现不理想。为解决上述问题,本文提出了一种新颖的基于Transformer的模型——非平稳GNNCrossformer,用于非平稳多变量时空预测。该模型采用非平稳两阶段注意力机制(Nonstationary-Two-Stage-Attention)...
解读: 该非平稳时空风电预测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过图神经网络与Transformer融合的多风场功率预测模型,可优化储能系统的充放电策略制定和能量管理。其非平稳序列处理能力可提升iSolarCloud平台的预测性维护精度,增强风储耦合场景下的GFM/...
考虑尾流时空耦合的风电场功率预测
Wind Farm Power Prediction with Wake Spatiotemporal Coupling
Yueteng Xie · Fangming Deng · Wenxiang Luo · Bo Gao 等6人 · IEEE Transactions on Sustainable Energy · 2025年9月
在动态气象条件下,风电机组群的功率预测面临尾流效应时空耦合的挑战。本文提出一种考虑尾流效应时空动态耦合的风电场功率预测方法。通过融合风机空间分布与实时气象数据构建动态图网络,实现尾流传播路径的自适应表征。设计双驱协同框架,在时空维度嵌入物理规律约束,缓解数据驱动模型在极端工况下的物理失真问题。构建时空解耦特征增强架构,捕捉风机间空间关联及多时间尺度气象特征。实验结果表明,该方法显著提升预测精度。
解读: 该风电场功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。其时空耦合建模方法可优化ST系列储能变流器的调度策略,提升PowerTitan大型储能系统在风光储多能互补场景下的运行效率。尾流效应动态预测技术可集成到iSolarCloud平台,增强新能源电站群的功率预测精度,为储能调度和电网调峰...
基于广义动态因子模型与生成对抗网络的风电场景生成
Wind Power Scenario Generation based on the Generalized Dynamic Factor Model and Generative Adversarial Network
Young-ho Cho · Hao Zhu · Junghyeop Im · Duehee Lee 等5人 · IEEE Transactions on Power Systems · 2025年9月
为开展资源充足性研究,我们利用时空特征(空间和时间相关性、波形、边际和爬坡率分布、功率谱密度以及统计特征)合成了分布式风电场的多个长期风电情景。在情景中生成空间相关性需要为相邻风电场设计公共因子,为远距离风电场设计对立因子。广义动态因子模型(GDFM)可以通过互谱密度分析提取公共因子,但它无法精确复制波形模式。生成对抗网络(GAN)可以通过假样本判别器验证样本,从而合成能体现时间相关性的合理样本。为结合GDFM和GAN的优势,我们使用GAN提供一个滤波器,从观测数据中提取包含时间信息的动态因子,...
解读: 该风电场景生成技术对阳光电源储能与并网产品具有重要应用价值。通过广义动态因子模型与GAN网络的结合,可以准确预测风电功率波动特征,这对ST系列储能变流器的调度策略优化和PowerTitan系统的容量配置具有重要指导意义。该方法可集成到iSolarCloud平台,提升风储联合运行的经济性。同时,其时空...
从投入到产出:中国风电效率与装机容量耦合协调的时空格局及驱动因素解析
From input to output: Unraveling the Spatio-temporal pattern and driving factors of the coupling coordination between wind power efficiency and installed capacity in China
Pihui Liua · Mengdi Lib · Chuanfeng Hanb · Lingpeng Mengc 等5人 · Applied Energy · 2025年1月 · Vol.396
摘要 作为一种清洁可再生能源利用方式,风能在全球能源体系中的地位日益突出。深入理解其生产投入与发电效率之间的关系,对于优化产业布局具有重要意义。然而,现有研究往往难以有效揭示这两者之间的时空错配特征及其影响因素。本研究采用SBM-DDF模型测度2015年至2023年中国31个省份的风电发电效率;运用标准差椭圆模型分析风电发电效率与装机容量的时空演化特征,并通过改进的耦合协调度(CCD)模型评估二者之间的相互关系;进一步地,借助时空地理加权回归模型探究影响耦合协调度的关键因素。结果表明,2015—...
解读: 该研究揭示的风电效率与装机容量时空错配问题,对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。研究发现中西部地区风电效率高但装机集中于东南-东北走向,这为储能系统配置提供了优化依据:在高效率低装机区域通过储能提升消纳能力,在高装机区域通过削峰填谷提升整体效率。研究中的耦合协...
一种面向时空城市轨道交通的混合储能系统容量优化与能量管理多任务强化学习方法
A Multi-Task Reinforcement Learning Approach for Optimal Sizing and Energy Management of Hybrid Electric Storage Systems Under Spatio-Temporal Urban Rail Traffic
Guannan Li · Siu Wing Or · IEEE Transactions on Industry Applications · 2025年1月
客流波动和延误导致的交通管制给城市轨道交通牵引网络中混合储能系统(HESS)的高效再生制动能量利用带来了巨大挑战。本文提出了一种基于多任务强化学习(MTRL)的协同HESS容量配置与能量管理优化框架,以提高动态时空城市轨道交通下HESS的经济运行水平。将不同时空牵引负荷分布下特定配置的HESS控制问题表述为多任务马尔可夫决策过程(MTMDP),并设计了一种考虑日常运营模式的迭代容量优化方法,以最小化HESS的生命周期成本(LCC)。然后,开发了一个由基于Copula的客流生成方法和结合牵引能耗 ...
解读: 该多任务强化学习框架对阳光电源轨道交通储能解决方案具有重要应用价值。可直接应用于ST系列储能变流器的容量配置优化和PowerTitan储能系统的实时能量管理策略,通过协同优化提升再生制动能量回收效率。该方法处理时空负荷波动的能力可启发iSolarCloud云平台增强预测性维护功能,将强化学习算法集成...
基于层次图神经网络与极值理论的短期区域风电功率预测方法
Short-term regional wind power forecast method based on hierarchical graph neural network and extreme value theory
Menglin Liab · Ming Yang · Yixiao Yuab · Energy Conversion and Management · 2025年1月 · Vol.341
摘要 从电力系统运行者的角度来看,管辖区域内风电总出力潜力相比单个风电场更受关注。挖掘目标区域内多个风电场站点之间的时空依赖关系可显著提升预测性能。然而,大量风电场由于不同空间尺度天气系统的连续性所引发的复杂相关性,给建模带来了不可忽视的挑战;此外,基于均方误差的传统损失函数在应对极端事件时表现出固有的局限性。为解决上述问题并进一步提高预测精度,本文构建了一种结合修正模块和基于极值理论改进损失函数的层次化时空图神经网络模型。首先,综合考虑地理距离信息和长期气候特征,采用凝聚式层次聚类方法将区域划...
解读: 该分层图神经网络区域风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。精准的区域风电预测可优化储能系统充放电策略,提升风储协同效率。其极值理论改进损失函数可增强极端工况预测能力,为iSolarCloud平台的预测性维护提供算法支撑。时空依赖建模方法可应用于多站点...
提高能源市场中跨时间预测协调的准确性和实用性
Improving cross-temporal forecasts reconciliation accuracy and utility in energy market
Mahdi Abolghasemi · Daniele Girolimetto · Tommaso Di Fonzo · Applied Energy · 2025年1月 · Vol.394
摘要 风能发电预测对于风电场日常运行管理以及使市场运营商能够在需求规划中有效应对电力不确定性至关重要。传统的预测协调方法依赖于样本内误差进行预测协调,但这些方法在未来性能上的泛化能力可能不足。此外,传统的聚合结构并不总是与实际决策需求相一致,而评估指标也常常忽视预测误差带来的经济影响。为应对这些挑战,本文探讨了先进的跨时间预测模型及其在提升预测准确性与决策质量方面的潜力。首先,我们提出一种新方法,在协方差矩阵估计和预测协调过程中利用验证误差而非传统的样本内误差。其次,我们引入基于决策的聚合层级用...
解读: 该跨时序预测协调技术对阳光电源储能系统(ST系列PCS、PowerTitan)及新能源场站具有重要应用价值。论文提出的基于验证误差的协调方法可提升预测精度7%以上,能优化储能系统充放电策略,降低辅助服务罚金成本。决策导向的聚合层级设计与阳光电源iSolarCloud平台的智能运维需求高度契合,可将计...
第 1 / 9 页