← 返回
考虑时空相关性的非交叉分位数集群风电概率预测
Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation
| 作者 | Yuejiang Chen · Jiangwen Xiao · Yanwu Wang · Yunfeng Luo |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An improved multi-step probabilistic forecasting module is proposed. |
语言:
中文摘要
摘要 概率预测在电力系统的安全、稳定与运行中起着重要作用。传统的非参数概率预测分位数回归方法存在分位数交叉问题,此外,当前用于风电场集群功率预测的神经网络方法往往忽略了相关风电场之间的时空相关性。为解决上述问题,本文提出了一种考虑时空相关性的集群功率预测模型(CFM)。该模型采用一种新型的空间模式注意力机制(SPA),结合卷积神经网络与注意力机制的优势,以有效提取空间信息;同时,采用改进的多步分位数循环神经网络(IMQ-RNN)和改进的非交叉分位数回归(INCQR)策略作为CFM的输出模块,以生成高质量的预测结果。基于2014年全球能源预测竞赛公开的真实数据进行了数值仿真。结果表明,所提出的模型在确定性预测和概率预测方面均具有优异的性能。
English Abstract
Abstract Probabilistic forecasting plays an important role in the safety, stability and operation of power system . The traditional quantile regression method of non-parametric probability forecasting has the problem of crossing-quantile. Besides, current neural network methods for wind farm cluster power forecasting often overlook the spatio-temporal correlation among related wind farms. To solve these problems, a cluster power forecasting model (CFM) considering spatio-temporal correlation is proposed in this paper. A novel spatial pattern attention (SPA) combining the advantages of convolutional neural network and attention mechanism is used to extract the spatial information. An improved multi-horizon quantile recurrent neural network (IMQ-RNN) and an improved non-crossing quantile regression (INCQR) strategy are used as the output module of CFM to produce high quality forecasting results. Numerical simulations are conducted by using public real-world data from the Global Energy Forecasting Competition 2014. The results show that the proposed model has excellent performance in both deterministic forecasting and probabilistic forecasting.
S
SunView 深度解读
该非交叉分位数概率预测技术对阳光电源储能系统具有重要应用价值。论文提出的时空关联集群功率预测模型可直接应用于ST系列PCS和PowerTitan储能系统的智能调度策略优化。通过改进的多时域分位数循环神经网络,能够提升iSolarCloud平台对分布式风光储集群的预测精度,解决传统分位数回归的交叉问题。空间模式注意力机制可增强多站点储能协同控制能力,为GFM/GFL控制策略提供更可靠的功率预测输入,提升电网稳定性和储能系统经济效益。