← 返回
光伏发电技术 深度学习 ★ 5.0

DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络

DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting

作者 Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu · Junsheng Zheng
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 378 卷
技术分类 光伏发电技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel DEST-GNN that captures spatio-temporal correlations for multi-site PV power forecasting.
语言:

中文摘要

准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间的边表示。为了提高预测精度,引入稀疏时空注意力机制以滤除光伏电站之间的弱关联。随后,我们构建了一种自适应图卷积网络(GCN),该网络结合自适应邻接矩阵和时间卷积网络,用以捕捉这些光伏电站之间潜在的时空依赖关系。基于美国国家可再生能源实验室(NREL)提供的阿拉巴马州和加利福尼亚州数据集开展的实验研究表明了DEST-GNN的有效性。在阿拉巴马数据集上,DEST-GNN在12个月的训练周期内实现了0.49的平均绝对误差(MAE);在加利福尼亚数据集上,其MAE进一步降低至0.42,持续展现出强大的预测能力。

English Abstract

Abstract Accurate forecasting of photovoltaic (PV) power is crucial for real-time grid balancing and storage system optimization. However, due to the intermittent and fluctuating nature of PV power generation , achieving accurate PV power forecasting remains a challenge. In this paper, we propose a novel approach for multi-site intra-hour PV power forecasting. Different from current work which predicts the power of each PV station independently, we predict the power of each PV station simultaneously by considering the inherent spatio-temporal correlation with other PV stations and develop a novel graph network named DEST-GNN. In DEST-GNN, an undirected graph is used to represent the dependence of these PV stations. Each PV station is represented by a node and the spatio-temporal correlation of any two PV stations is represented by an edge between them. To improve the accuracy of prediction, sparse spatio-temporal attention is adopted to filter out the weak associations of these PV stations. We then develop an adaptive graph convolution network (GCN) that adopts an adaptive adjacency matrix and a temporal convolution network to capture the hidden spatio-temporal dependency of these PV stations. Experimental studies using datasets from Alabama and California, provided by the National Renewable Energy Laboratory (NREL), demonstrate the effectiveness of DEST-GNN. For the Alabama dataset, DEST-GNN achieves a mean absolute error (MAE) of 0.49 over a 12-mon training scale. Furthermore, DEST-GNN attains an MAE of 0.42 on the California dataset, continuing to exhibit its strong forecasting capabilities.
S

SunView 深度解读

该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,降低电网波动风险。MAE 0.42-0.49的预测精度为1500V大型光储电站的实时平衡控制提供数据支撑,助力提升MPPT优化效率和VSG虚拟同步发电机的响应准确性。