← 返回
基于多空间注意力LSTM的时序环境感知光伏性能预测框架
Temporal environment informed photovoltaic performance prediction framework with multi-spatial attention LSTM
| 作者 | Dou Hong · Fengze Li · Jieming Ma · Ka Lok Man · Huiqing Wen · Prudence Wong |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 296 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A TE matrix is proposed to capture dynamic temporal and environmental factors. |
语言:
中文摘要
摘要 预测光伏(PV)系统的性能对于优化可再生能源利用至关重要。然而,传统的时间序列方法仅关注时间模式,忽略了环境变化的影响,而诸如局部遮挡等动态条件进一步增加了功率预测的复杂性。为应对由遮挡引起的变化,本文提出了一种时序与环境感知预测(TEIP)框架,该框架通过一种新颖的多空间注意力LSTM(MSAL)网络,动态整合时序与环境数据,从而提升光伏功率预测精度。该框架利用TE矩阵捕捉随时间变化的结构化环境条件,包括由局部遮挡引起的变异性。所设计的双分支MSAL模型通过空间特征提取对环境数据进行独特处理,随后由LSTM进行序列化处理以捕获时间依赖性。这种分层的空间-时间处理机制实现了对变化环境条件的动态自适应。实验结果表明,该框架在晴天条件下达到0.952的R²,预测精度显著优于传统方法。即使在具有挑战性的多云条件下,该框架仍能保持稳定性能(R²为0.948),表现出卓越的鲁棒性,验证了其在实际应用中的有效性。
English Abstract
Abstract Predicting the performance of photovoltaic (PV) systems is crucial for optimizing renewable energy utilization. However, traditional time-series methods focus only on temporal patterns, overlooking environmental variations, while dynamic conditions such as partial shading further complicate power prediction. To address this shading-induced variability, we propose a Temporal and Environment-Informed Prediction (TEIP) framework, which enhances PV power prediction by dynamically structuring temporal and environmental data through a novel multi-spatial attention LSTM (MSAL) network. This framework utilizes the TE matrix to capture structured environmental conditions over time, including the variability caused by partial shading. A dual-branch MSAL model uniquely processes environmental data through spatial feature extraction, which is then sequentially processed by LSTM to capture temporal dependencies. This hierarchical spatial–temporal processing enables dynamic adaptation to changing environmental conditions. Experimental results show the framework achieves superior prediction accuracy with R 2 of 0.952 under sunny conditions, significantly outperforming traditional approaches. The framework demonstrates exceptional robustness by maintaining consistent performance (R 2 of 0.948) even under challenging cloudy conditions, validating its effectiveness for real-world applications.
S
SunView 深度解读
该TEIP框架的多空间注意力LSTM架构对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。其时空环境矩阵建模方法可增强MPPT算法在局部遮挡场景下的动态响应能力,R²达0.952的预测精度可显著提升ST储能系统的充放电策略优化。建议将该框架集成至智能运维平台,结合虚拟同步发电机控制技术,实现阴天等复杂工况下的功率预测鲁棒性提升,为1500V系统的预测性维护提供算法支撑,优化新能源电站整体发电效率。