← 返回
采用不同腔体构型散热器对高倍聚光光伏系统进行最优热管理
Optimal thermal management of High-Concentrator photovoltaic systems using heat sinks with various cavity configurations
| 作者 | M.Khoshvaght-Aliabadiab · Z.Chamanroy · A.Feizabadi · Y.T.Kanga |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 345 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Six different cavity-enhanced heat sinks for HCPV cell cooling are developed. |
语言:
中文摘要
摘要 为了在高倍聚光光伏(HCPV)系统中将电池温度维持在安全范围内,必须采用高效且具有成本效益的冷却策略。这种策略不仅能够提升系统性能,还能防止热损伤并延长光伏电池的使用寿命。本研究设计并评估了多种具有不同腔体几何结构的新型水冷式散热器。研究聚焦于一个由25个三结电池组成的5×5阵列模块,在1000倍聚光比下工作,冷却剂质量通量范围为100至1100 kg/m²·s。结果表明,带有腔体增强结构的设计显著降低了电池的平均温度。在最低质量通量下,矩形腔体可使温度降低最多达8.7 K;而在最高质量通量下,下游尖端呈锐角的三角形腔体(选定构型)相比基准模型可实现高达18.5 K的温降。参考模型需要800 kg/m²·s的质量通量才能使所有电池保持在可接受的温度范围内,而选定模型仅需300 kg/m²·s即可达到相同目标。为确保温度均匀性(ΔT < 5 K),所需质量通量需超过500 kg/m²·s。在此条件下,随着质量通量的增加,热应力从68.62 MPa降低至40.47 MPa。所选模型还实现了最高的电池效率、电输出功率和净发电量,在效率上约提高2.28%,热功率则减少1.34%。当质量通量为1100 kg/m²·s时,该模型的性能指数达到1.28,表明其热学与电学综合性能优于其他构型。
English Abstract
Abstract To maintain cell temperatures within safe limits in high-concentration photovoltaic (HCPV) systems, an efficient and cost-effective cooling strategy is essential. Such a strategy not only enhances system performance but also prevents thermal damage and extends the lifespan of the PV cells. In this study, novel water-cooled heat sinks with various cavity geometries are designed and evaluated. The investigation focuses on a cell module consisting of a 5 × 5 array of triple-junction cells exposed to a concentration ratio of 1000, with coolant mass flux ranging from 100 to 1100 kg/m 2 ·s. The results demonstrate that cavity-enhanced designs significantly reduce the average cell temperature. Rectangular cavities lower the temperature by up to 8.7 K at the lowest mass flux, while triangular cavities with a sharp downstream tip (the selected configuration) achieve temperature reductions of up to 18.5 K at the highest mass flux, compared to the baseline. While the reference model requires a mass flux of 800 kg/m 2 ·s to maintain all cells within the acceptable temperature range, the selected model achieves this target with only 300 kg/m 2 ·s. To ensure temperature uniformity (Δ T < 5 K), a mass flux exceeding 500 kg/m 2 ·s is required. Under these conditions, thermal stress decreases from 68.62 to 40.47 MPa as mass flux increases. The selected model also achieves the highest cell efficiency, electrical output, and net power generation, with an approximate 2.28 % increase in efficiency and a 1.34 % reduction in thermal power. At a mass flux of 1100 kg/m 2 ·s, the model reaches a performance index of 1.28, indicating superior thermal and electrical performance compared to the other configurations.
S
SunView 深度解读
该HCPV热管理技术对阳光电源高功率密度产品具有重要借鉴价值。研究中的腔体强化散热设计可应用于ST系列PCS和PowerTitan储能系统的功率模块热管理,特别是SiC/GaN器件在高频开关下的温控优化。三角形腔体设计使冷却剂流量降低62.5%仍保持温度均匀性,这为储能PCS液冷系统提供了降本增效思路。温度均匀性控制(ΔT<5K)可减少41%热应力,有助提升功率器件可靠性和系统寿命,契合阳光电源1500V高压系统和充电桩大功率模块的散热需求,可集成至iSolarCloud平台实现热管理预测性维护。