← 返回
光伏发电技术 储能系统 多物理场耦合 ★ 5.0

常规㶲与先进㶲分析在一种耦合太阳能制氢与燃料电池集成的新型冷热电联产系统中的应用

Conventional exergy and advanced exergy analysis of an innovative combined cooling, heating, and power system coupling solar-powered hydrogen production with fuel cell integration

作者 Kun Yang · Yufei Chaib · Na Dub · Jiaxuan Lib · Ziyu Huob · Yuzhu Chen
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 346 卷
技术分类 光伏发电技术
技术标签 储能系统 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel cooling heating and power system coupled with solar full-spectrum is proposed.
语言:

中文摘要

摘要 随着全球能源短缺和环境污染问题日益加剧,迫切需要高效、清洁的能源系统来应对这些挑战。本研究旨在通过集成多种先进技术,开发一种高性能的冷热电三联供系统,以提高能源利用效率并减少环境影响。该系统集成了光谱分束太阳能光伏/热能混合系统、甲烷干重整制氢技术以及固体氧化物燃料电池-燃气轮机混合发电系统,从而实现优异的热力学性能。研究建立了系统各组件的热力学模型,采用Aspen Plus进行仿真,获取所有物质流和能量流的热力学参数,并结合常规㶲分析与先进㶲分析方法对系统进行全面评估。结果表明,该系统的能量效率达到73.54%,发电量为1.320 MW(占总能量输出的45.82%);常规㶲效率为37.62%,其中光伏电池(54.17%)、双效溴化锂-水吸收式制冷系统(65.71%)、太阳能集热器(37.16%)和固体氧化物燃料电池(35.63%)的㶲损尤为显著;先进㶲分析显示,总㶲损失中有14.28%是可避免的,其中双效LiBr-H₂O吸收式制冷系统和固体氧化物燃料电池存在较大的可避免内源㶲损(分别为0.273 MW和0.131 MW),是系统优化的关键目标。研究表明,相较于常规方法,先进㶲分析在识别可避免㶲损失、建立优化优先级以及揭示系统改进潜力方面更具优势,为综合能源系统的优化提供了有价值的参考依据。

English Abstract

Abstract With worsening global energy shortages and environmental pollution, there is an urgent requirement for efficient and clean energy systems to address these issues. This study aims to develop a high-performance combined cooling, heating, and power system by integrating multiple advanced technologies to improve energy efficiency and reduce environmental impact. This study integrates a spectrum-splitting solar photovoltaic/thermal hybrid system, methane dry reforming for hydrogen production, and a solid oxide fuel cell-gas turbine hybrid power generation system to achieve excellent thermodynamic performance. The study creates thermodynamic models for each component of the system, uses Aspen Plus for simulation to obtain thermodynamic parameters of all material and energy flows, and performs a comprehensive evaluation using both conventional and advanced exergy analyses. The results show that the system achieved an energy efficiency of 73.54 % with an electricity generation of 1.320 MW (accounting for 45.82 % of the total energy output); the conventional exergy efficiency was 37.62 %, with significant exergy destruction in photovoltaic cells (54.17 %), dual-effect lithium bromide-water absorption refrigeration system (65.71 %), solar collectors (37.16 %), and solid oxide fuel cells (35.63 %); advanced exergy analysis indicated that 14.28 % of the total losses were avoidable, among which the dual-effect LiBr-H 2 O absorption refrigeration system and solid oxide fuel cells had substantial avoidable endogenous exergy destruction (0.273 MW and 0.131 MW, respectively), making them key optimization targets. The study demonstrates that advanced exergy analysis was more effective than conventional methods in identifying avoidable exergy losses, establishing optimization hierarchies, and revealing improvement potentials, providing useful references for the optimization of integrated energy systems.
S

SunView 深度解读

该光伏光热耦合制氢-燃料电池冷热电联供系统对阳光电源ST储能系统和SG光伏逆变器产品线具有重要参考价值。研究揭示的光伏组件54.17%火用损失和双效吸收式制冷系统65.71%火用损失,为我司PowerTitan储能系统的热管理优化及多物理场耦合控制提供理论依据。先进火用分析方法可应用于iSolarCloud平台的预测性维护算法,识别系统14.28%可避免损失,指导GFM/GFL控制策略优化。该系统73.54%能源效率和45.82%发电占比的综合能源利用模式,可启发我司储能PCS与光伏逆变器协同控制技术开发,提升多能互补系统整体性能。