← 返回
光伏发电技术 储能系统 多物理场耦合 ★ 5.0

可再生能源电解耦合在TRIERES氢能谷中的应用——一种灵活的技术经济评估工具

RES-electrolyser coupling within TRIERES hydrogen valley – A flexible technoeconomic assessment tool

作者 Nikolaos Skordoulias · Sotirios Karellas · Dimitrios V.Lyridis · Stella G.Giannissi · Georgios Mitkidis
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 327 卷
技术分类 光伏发电技术
技术标签 储能系统 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Technoeconomic tool based on hourly renewable energy availability and H2 demand.
语言:

中文摘要

摘要 气候变化问题日益紧迫,引发了人们对绿色氢气作为清洁能源载体前所未有的关注。风能和太阳能等可再生能源(RES)具有间歇性,可能给能源供应带来不确定性,进而导致电网中电力供需失配。为此,绿色氢气生产可通过增强系统灵活性,有效应对可再生能源的波动性和随机特性,从而提供一种解决方案。此外,绿色氢气还可在难以减排的领域脱碳以及推动跨部门耦合方面发挥关键作用。本研究致力于深入探讨这一课题,开发了一种动态技术经济分析工具,能够灵活评估特定区域或枢纽内碱性(AEL)电解水制氢与可再生能源耦合的最佳配置方案。研究重点在于实现绿色氢气生产的成本效益、高效性与可持续性。该工具依托涵盖全年逐小时数据的综合数据集,包括来自间歇性可再生能源的发电量以及电力批发市场电价,并结合用户可自定义的输入参数。该工具适用于多种应用场景,包括与专用可再生能源电厂直接耦合,以及采用电网作为备用电源的混合配置模式。模型通过优化可再生能源装机容量、电解槽容量和氢气储存容量,以最小化所产氢气的平准化成本(LCOH)和/或运行碳强度(CI)。该工具已在希腊伯罗奔尼撒半岛正在建设的TRIERES氢能谷项目框架下开展实际应用研究。针对所分析的各种配置方案,氢气的平准化成本介于7.75至12.68 €/kgH₂之间。其中最具成本优势的系统配置包含12 MW太阳能和19 MW风能组成的混合可再生能源供电系统,并配备3.5吨氢气储存能力,可实现最低的平准化氢气成本为7.75 €/kgH₂。对电解槽堆栈及配套设备(Balance of Plant)的资本支出(CAPEX)提供补贴,可进一步将平准化氢气成本降低最多达0.6 €/kgH₂。

English Abstract

Abstract The escalating urgency to address climate change has sparked unprecedented interest in green hydrogen as a clean energy carrier. The intermittent nature of Renewable Energy Sources (RES) like wind and solar can introduce unpredictability into the energy supply, potentially causing mismatches in the power grid. To this end, green hydrogen production can provide a solution by enhancing system flexibility, thereby accommodating the fluctuations and stochastic characteristics of RES. Furthermore, green hydrogen could play a pivotal role in decarbonizing hard-to-abate sectors and promoting sector coupling. This research article endeavors to delve into this subject by developing a dynamic techno-economic analysis tool, capable of flexibly assessing the optimal setup of Alkaline (AEL) electrolysis coupled with RES in a specific region or hub. The focus lies on achieving cost-effectiveness, efficiency, and sustainable production of green hydrogen. The tool leverages a comprehensive dataset covering a full year of hourly data on both renewable electricity production from intermittent RES and wholesale electricity market prices, alongside customizable inputs from users. It can be applied across various scenarios, including direct coupling with dedicated RES plants and hybrid configurations utilizing the electricity grid as a backup source. The model optimizes RES, electrolyser and hydrogen storage capacities to minimize the Levelized Cost of Hydrogen (LCOH) and/or the operational Carbon Intensity (CI) of hydrogen produced. The tool is applied within a real-world application study in the framework of the TRIERES Hydrogen Valley Project, which is taking shape in Peloponnese, Greece. For the various configurations analysed the LCOH ranges from 7.75 to 12.68 €/kgH 2 . The cost-optimal system configuration, featuring a hybrid RES power supply of 12 MW solar and 19 MW wind energy alongside with 3.5 tonnes of hydrogen storage leads to a minimum LCOH of 7.75 €/kgH 2 . Subsidies on electrolyser stack and balance of plant CAPEX can reduce LCOH by up to 0.6 €/kgH 2 .
S

SunView 深度解读

该RES-电解槽耦合技术对阳光电源ST储能系统和SG光伏逆变器产品线具有重要应用价值。研究中的混合配置(12MW光伏+19MW风电)与我司1500V光伏系统及PowerTitan储能方案高度契合,可通过GFM控制技术平抑可再生能源波动,优化制氢经济性。文中LCOH优化模型可指导我司iSolarCloud平台开发光伏-储能-制氢一体化解决方案,结合三电平拓扑和MPPT优化技术,提升系统能效。该应用场景为我司拓展氢能领域sector coupling业务提供技术路径参考。