← 返回
光伏发电技术 储能系统 SiC器件 多物理场耦合 ★ 5.0

风沙与温度耦合作用下光伏组件的力学建模

Mechanical modeling of photovoltaic modules under wind-sand and temperature coupling

作者 Chenxu Sun · Haimiao Wu · Xingfu Liang · Aoling Xu · Jinghui Cai
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 储能系统 SiC器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Develops a new mechanical model for photovoltaic modules under wind-sand and temperature coupling.
语言:

中文摘要

摘要 针对光伏(PV)组件在戈壁、荒漠等地区易产生隐裂的问题,本文基于经典层合板理论(CLT),构建了风沙-温度多物理场耦合的光伏组件力学模型,分析了不同极端天气条件下硅太阳能电池的等效应力分布规律以及光伏组件几何结构对这些规律的影响。首先,建立了风沙荷载等效模型和光伏面板温度预测模型;其次,依据经典层合板理论,将温度变量引入几何方程中,构建了光伏组件的热-力耦合模型;最后,通过ANSYS软件验证了模型的正确性。结果表明:硅太阳能电池的等效应力在组件中心区域最高,而在边缘区域出现等效应力突变现象;在极寒天气下硅太阳能电池的等效应力最大,在极强沙尘暴天气下盖板玻璃的等效应力最大;当盖板玻璃厚度为5 mm、背板玻璃厚度为2.4 mm时,硅太阳能电池的等效应力最小;当长宽比小于或等于2时,硅电池的等效应力随荷载增加而急剧上升。本研究为分析光伏组件隐裂失效机理及优化其结构设计提供了理论支持。

English Abstract

Abstract To address the problem that photovoltaic (PV) modules are prone to hidden cracks in deserts, such as Gobi, and wastelands, this study constructs a PV module mechanical model of wind-sand-temperature multiphysical field coupling on the basis of classical laminate theory (CLT). The equivalent stress distribution laws of silicon solar cells under different extreme weather conditions and how PV module geometry affects these laws are analyzed. First, a wind-sand load equivalent model and a PV panel temperature prediction model are developed. Second, in accordance with CLT, temperature variables are introduced into the geometric equations to construct a thermal–mechanical coupling model of PV modules. Finally, the correctness of the model is verified by ANSYS. Results show that the equivalent stress of the silicon solar cells is the highest in the central area of the module, and a sudden equivalent stress change occurs in the edge area. The equivalent stress of the silicon solar cells is the highest in extremely cold weather, and the equivalent stress of the cover glass is the highest in extremely strong sandstorm weather. The equivalent stress of the silicon solar cells is minimized when the cover glass is 5 mm thick and the back glass is 2.4 mm thick. When the aspect ratio is less than or equal to 2, the silicon cells’ equivalent stress increases sharply with increasing load. This study provides theoretical support for analyzing hidden crack failure and optimizing the structure of PV modules.
S

SunView 深度解读

该光伏组件机械应力建模技术对阳光电源SG系列逆变器及光伏系统设计具有重要价值。研究揭示的极端风沙温度耦合下硅片应力分布规律,可指导我们优化组件选型标准和系统配置方案。特别是盖板玻璃5mm、背板玻璃2.4mm的最优厚度配比,以及宽高比≤2时的应力突变特性,可应用于iSolarCloud平台的预测性维护算法,提前识别隐裂风险。结合我司1500V高压系统在戈壁荒漠的大量应用经验,该模型可为极端环境下的组件选型、支架设计及MPPT优化策略提供理论支撑,降低因隐裂导致的发电损失和安全隐患。