← 返回
光伏发电技术 储能系统 SiC器件 多物理场耦合 ★ 5.0

基于物理约束长短时记忆网络的能源转型背景下梯级水电站长期运行管理

Managing long-term operation of cascade hydropower plants under energy transition with physics-constrained long-short term memory networks

作者 Zhipeng Zhao · Zhihao Deng · Xiaoyu Jin · Zebin Ji · Rui Cao · Chuntian Cheng
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 393 卷
技术分类 光伏发电技术
技术标签 储能系统 SiC器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A simulation–optimization–learning approach for managing hydropower operations.
语言:

中文摘要

摘要 在能源转型进程中,风电和太阳能发电的大规模增长将加剧维持电网连续负荷-发电平衡以确保电网稳定性的复杂性。水电可作为整合风能与太阳能的低碳灵活性电源,但季节性径流波动以及多重耦合不确定性将深刻影响传统水电运行方式。本文提出一种新的模拟–优化–学习耦合方法,用以应对不确定性及非线性动态水电运行特性,从而提取能源转型背景下梯级水电站的长期运行规则。该方法包含三个关键步骤:模拟阶段,采用Kirsch–Nowak径流生成模型与ARIMA模型刻画水文与气象不确定性;优化阶段,构建目标驱动的最优模型,考虑非线性动态水电运行特性,获取能源转型前后最优运行方案;学习阶段,建立融合物理水库运行约束的物理约束长短时记忆网络(PCLSTM),从最优方案中学习运行规则。以中国西南地区乌江流域的水–风–光混合系统为案例开展研究。结果表明:(1)能够有效提取适应能源转型的运行规则;(2)相较于传统长短时记忆网络,PCLSTM提取的运行规则可显著提高模拟精度,降低水库水位惩罚程度,有效指导能源转型前后水电运行。所有水电站的平均水库水位惩罚程度在能源转型前可由22%降至5%,转型后由10%降至4%;(3)与随机对偶动态规划(SDDP)相比,所提方法的实际模拟结果接近现有先进方法水平,并能解决SDDP无法处理的问题;(4)水电可通过年内水–电时空交换来消纳风电与光伏电力,但需牺牲部分自身发电量。

English Abstract

Abstract On the path to energy transition, substantial increases in wind and solar power are expected to heighten the complexity of ensuring the continuous load-generation balance for grid stability. Hydropower could be the low-carbon source of flexibility to integrate wind and solar power, but seasonal fluctuations and multiple coupling uncertainties would shape traditional hydropower operations. Here we propose a new simulation–optimization–learning approach that addresses uncertainties and nonlinear dynamic hydropower operation characteristics to extract long-term operational rules for cascade hydropower plants under energy transition. The approach consists of three key steps: Simulation, using Kirsch–Nowak Streamflow Generator and ARIMA to track hydrological and meteorological uncertainties; Optimization, developing the objective-driven optimal model that consider nonlinear dynamic hydropower operation characteristics to obtain optimal schemes before and after energy transition; and Learning, constructing physics-constrained LSTM networks (PCLSTM) that incorporate physical reservoir operation constraints to learn operational rules from the optimal schemes. Case studies are conducted for a hydro-wind-solar hybrid system in Southwest China’s Wujiang River Basin. Results show that: (1) The effective operational rules adapted to energy transition can be extracted; (2) Compared to long-short term memory networks, the operational rules extracted by PCLSTM can enhance simulation accuracy and reduce the degree of reservoir level penalty, effectively guiding hydropower operations both before and after energy transition. The average degree of reservoir level penalty in all hydropower plants could decrease from 22 % to 5 % before the energy transition and from 10 % to 4 % after energy transition; (3) Compared to stochastic dual dynamic programming (SDDP), the real simulation results from the proposed approach are close to those of the state-of-the-art existing approaches and can address problems that the SDDP cannot solve. (4) Hydropower could perform intra-annual hydraulic-electricity spatial-temporal exchange to accommodate wind and solar power, at the expense of sacrificing a portion of hydropower generation.
S

SunView 深度解读

该研究对阳光电源储能系统(ST系列PCS、PowerTitan)与光伏逆变器(SG系列)协同优化具有重要价值。文中提出的物理约束LSTM网络可应用于iSolarCloud平台,实现水-风-光混合系统的智能调度。研究揭示的水电时空调节特性为储能系统功率平滑策略提供借鉴,PCLSTM算法可优化GFM/VSG控制下的储能充放电曲线。针对新能源波动性,可将该方法迁移至阳光电源储能EMS中,通过深度学习提取最优运行规则,降低电网调峰压力,提升光储系统经济性与稳定性。