← 返回
漂浮式光伏热交换机制及其与水动力和水温模型耦合的研究
Research on floating photovoltaic heat exchange mechanism and coupling with hydrodynamic and water temperature model
| 作者 | Linlin Yan · Jijian Liana · Ye Yaoc · Chao Maab · Peiyao Liab |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A coupling model of floating photovoltaic heat exchange mechanism and hydrodynamic and water temperature software is proposed for the first time. |
语言:
中文摘要
摘要 全球漂浮式光伏(FPV)产业正经历加速扩张,这给水环境影响的定量评估以及用于数值模拟的预测性计算框架的发展带来了关键挑战。本研究通过建立FPV组件的热交换机制模型,并实现与开源水动力及水温软件的时空耦合模拟,填补了上述研究空白。基于模型的适用性,本文分析了组件温度、输出功率和水温对关键参数的敏感性。随后,以南水北调中线工程张河节制闸南段为案例开展研究,预测了部署FPV后组件的输出功率、组件温度以及水体温度的变化情况。FPV组件的最佳倾角随时间变化,使得年发电量最大的最优倾角确定为26°。FPV拦截了54.2%的短波辐射通量,导致水面净热通量减少,使水温降低约0.39°C。此外,FPV组件自身释放长波热辐射通量,抵消了由于短波辐射减少所引起的大约50%的水温降幅。本研究可为评估漂浮式光伏发电特性及其对水环境的影响提供技术与理论支持。
English Abstract
Abstract The floating photovoltaic (FPV) industry has witnessed accelerated expansion globally, posing critical challenges for quantitative impact assessment on water environment and predictive computational framework development for numerical simulation. This study fills these gaps by establishing a heat exchange mechanism model of FPV module and achieving spatio-temporal coupling simulations with an open-source hydrodynamic and water temperature software. Given the model’s applicability, we analyzed the sensitivity of module temperature, output power, and water temperature to key parameters. Then, using the south section of the Zhanghe control gate in the middle route of the South-to-North Water Diversion Project as a case study, the module output power, module temperature and water temperature after FPV deployment are predicted. The optimal inclination angle of the FPV module varies with time, the optimal inclination angle for maximum annual output power is determined to be 26°. Short-wave radiation flux is intercepted 54.2 % by FPV. The total net heat flux of the water surface decreases, leading to a decrease in water temperature by approximately 0.39 °C. Additionally, long-wave heat flux is released by FPV module, which offset approximately 50 % of the water temperature decrease due to short-wave radiation deduction. The research could provide technical and theoretical support for assessing the characteristics of floating photovoltaics and their impact on the water environment.
S
SunView 深度解读
该研究对阳光电源浮式光伏系统具有重要价值。热交换机制模型可优化SG系列逆变器的温度管理策略,通过精准预测组件温度提升MPPT效率。水温耦合模型为iSolarCloud平台提供环境影响评估功能,支持漂浮电站智能运维。研究显示最优倾角26°可实现年发电量最大化,为PowerTitan储能系统在水上光伏场景的容量配置提供依据。短波辐射拦截54.2%的发现,可指导三电平拓扑逆变器的散热设计优化,降低水面温升对系统效率的影响,提升整体发电性能。