← 返回
光伏发电技术 储能系统 多物理场耦合 ★ 5.0

通过结合选择性液体滤波器和相变材料实现CPV/T系统对全太阳光谱的充分利用

Harnessing the full solar spectrum in CPV/T systems by combining selective liquid filters and phase change materials

语言:

中文摘要

摘要 在聚光光伏/热(CPV/T)系统中,由于存在显著的热损失以及光伏电池与热吸收体之间热解耦不足,有效利用太阳光谱仍具挑战性。本研究报道了一种新颖的旁路式CPV/T设计,采用水既作为光谱液体滤波器(SLF),又作为主动冷却剂,并结合相变材料(PCM)实现被动冷却。通过详细的三维计算流体动力学模拟,探讨了混合CPV/T-PCM/SBS(光谱光束分离)系统的整体性能,并确定了最大化能量产出和经济可行性的关键参数。虽然增加SLF厚度有助于提高热回收效率,但由于光伏波段内的光传输减少,导致发电量下降;相反,较薄的SLF可提升电功率输出,但会引起光伏电池温度升高并降低热能收益。因此,平衡SLF厚度与聚光比(CR)对于提升系统效率至关重要。针对所设计的模块,最优配置为SLF厚度6.045 mm、流量0.105 kg/s、PCM层厚度28.266 mm,在聚光比约为20的条件下实现。优化SLF的光学特性及PCM的热物理性质,可最大化CPV/T-PCM/SBS系统的能量产出,使其成为高效能量生成与热管理相结合的高倍聚光太阳能应用中的有前景解决方案。

English Abstract

Abstract Effectively utilizing the solar spectrum in concentrated photovoltaic/thermal (CPV/T) systems remains challenging due to significant heat losses and insufficient thermal decoupling between PV cells and thermal absorbers. This study reports a novel bypass CPV/T design employing water as both a spectral liquid filter (SLF) and active coolant, paired with phase change materials (PCMs) for passive cooling. Through detailed three-dimensional computational fluid dynamics simulations, the overall performance of the hybrid CPV/T-PCM/SBS (spectral beam splitting) system is explored, and the key parameters to maximize the energy productivity and economic feasibility are determined. While a thicker SLF improves the heat recovery, the produced electricity is sacrificed owing to the reduced light transmission in the PV waveband. Conversely, a thinner SLF increases the electrical power but causes higher PV cell temperatures and reduced thermal gains. Balancing the SLF thickness and concentrating ratio ( CR ) is critical to enhance the system efficiency. For the designed module, the optimal design features an SLF thickness of 6.045 mm, a flow rate of 0.105 kg/s, and a PCM layer thickness of 28.266 mm at CR ∼ 20. Optimizing the optical characteristics of the SLF and the thermophysical properties of the PCM allows for maximizing the productivity of the CPV/T-PCM/SBS system, making it a promising solution for high concentrated solar applications with efficient energy generation and thermal management.
S

SunView 深度解读

该CPV/T光谱分离与相变储热技术对阳光电源ST系列储能系统和SG光伏逆变器产品线具有重要启示。研究中的多物理场耦合优化方法(光学-热学-流体协同)可应用于PowerTitan储能热管理设计,通过相变材料被动冷却提升电池安全性。光谱分离思想可启发光伏逆变器MPPT算法优化,针对不同光谱条件动态调整工作点。CFD仿真优化流程可集成至iSolarCloud平台,实现储能系统热管理预测性维护,提升系统全生命周期效率与经济性。