← 返回
一种面向时空城市轨道交通的混合储能系统容量优化与能量管理多任务强化学习方法
A Multi-Task Reinforcement Learning Approach for Optimal Sizing and Energy Management of Hybrid Electric Storage Systems Under Spatio-Temporal Urban Rail Traffic
| 作者 | Guannan Li · Siu Wing Or |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 混合储能系统 多任务强化学习 尺寸优化 能量管理 生命周期成本 |
语言:
中文摘要
客流波动和延误导致的交通管制给城市轨道交通牵引网络中混合储能系统(HESS)的高效再生制动能量利用带来了巨大挑战。本文提出了一种基于多任务强化学习(MTRL)的协同HESS容量配置与能量管理优化框架,以提高动态时空城市轨道交通下HESS的经济运行水平。将不同时空牵引负荷分布下特定配置的HESS控制问题表述为多任务马尔可夫决策过程(MTMDP),并设计了一种考虑日常运营模式的迭代容量优化方法,以最小化HESS的生命周期成本(LCC)。然后,开发了一个由基于Copula的客流生成方法和结合牵引能耗 - 乘客时间灵敏度矩阵的实时时刻表重排算法组成的动态交通模型,以表征多列车牵引负荷的不确定性。此外,提出了一种基于具有知识迁移的对决双深度<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$Q$</tex-math></inline-formula>网络的MTRL算法,以同时从退火的特定任务智能体和运营环境中学习通用控制策略,从而有效解决MTMDP问题。基于实际地铁线路的对比研究验证了所提框架在降低城市轨道交通下HESS运行LCC方面的有效性。
English Abstract
Passenger flow fluctuation and delay-induced traffic regulation bring considerable challenges to cost-efficient regenerative braking energy utilization of hybrid electric storage systems (HESSs) in urban rail traction networks. This paper proposes a synergistic HESS sizing and energy management optimization framework based on multi-task reinforcement learning (MTRL) for enhancing the economic operation of HESSs under dynamic spatio-temporal urban rail traffic. The configuration-specific HESS control problem under various spatio-temporal traction load distributions is formulated as a multi-task Markov decision process (MTMDP), and an iterative sizing optimization approach considering daily service patterns is devised to minimize the HESS life cycle cost (LCC). Then, a dynamic traffic model composed of a Copula-based passenger flow generation method and a real-time timetable rescheduling algorithm incorporating a traction energy-passenger-time sensitivity matrix is developed to characterize multi-train traction load uncertainty. Furthermore, an MTRL algorithm based on a dueling double deep Q network with knowledge transfer is proposed to simultaneously learn a generalized control policy from annealing task-specific agents and operation environments for solving the MTMDP effectively. Comparative studies based on a real-world subway have validated the effectiveness of the proposed framework for LCC reduction of HESS operation under urban rail traffic.
S
SunView 深度解读
该多任务强化学习框架对阳光电源轨道交通储能解决方案具有重要应用价值。可直接应用于ST系列储能变流器的容量配置优化和PowerTitan储能系统的实时能量管理策略,通过协同优化提升再生制动能量回收效率。该方法处理时空负荷波动的能力可启发iSolarCloud云平台增强预测性维护功能,将强化学习算法集成到智能运维系统中,实现储能系统全生命周期成本优化。此外,该技术框架可扩展至充电桩网络的动态负荷管理,优化多站点充电功率分配策略,提升电网友好性和经济性,为阳光电源在轨道交通和新能源汽车充电领域的储能系统集成方案提供AI驱动的智能决策能力。