← 返回
风电变流技术 储能系统 地面光伏电站 ★ 5.0

提高能源市场中跨时间预测协调的准确性和实用性

Improving cross-temporal forecasts reconciliation accuracy and utility in energy market

语言:

中文摘要

摘要 风能发电预测对于风电场日常运行管理以及使市场运营商能够在需求规划中有效应对电力不确定性至关重要。传统的预测协调方法依赖于样本内误差进行预测协调,但这些方法在未来性能上的泛化能力可能不足。此外,传统的聚合结构并不总是与实际决策需求相一致,而评估指标也常常忽视预测误差带来的经济影响。为应对这些挑战,本文探讨了先进的跨时间预测模型及其在提升预测准确性与决策质量方面的潜力。首先,我们提出一种新方法,在协方差矩阵估计和预测协调过程中利用验证误差而非传统的样本内误差。其次,我们引入基于决策的聚合层级用于预测与协调,其中某些预测时域根据运行环境中所需的具体决策进行定制。第三,我们不仅通过传统准确性指标评估模型性能,还考察其在降低决策成本方面的能力,例如减少辅助服务中的惩罚费用。结果表明,使用验证误差可在不同时间尺度上使预测精度整体提升超过7%。我们还发现,基于统计结构的层级倾向于采用较不保守的预测策略,并减少收入损失。另一方面,基于决策的协调方法在预测准确性和决策成本之间提供了更为平衡的折衷方案,同时可使简单模型的计算时间节省2%–3%,复杂模型节省高达93%,因而更适用于实际应用。

English Abstract

Abstract Wind power forecasting is essential for managing daily operations at wind farms and enabling market operators to manage power uncertainty effectively in demand planning. Traditional reconciliation methods rely on in-sample errors for forecast reconciliation, which may not generalize well to future performance. Additionally, conventional aggregation structures do not always align with the decision-making requirements in practice, and evaluation metrics often neglect the economic impact of forecast errors. To address these challenges, this paper explores advanced cross-temporal forecasting models and their potential to enhance forecasting accuracy and decisions. First, we propose a novel approach that leverages validation errors, rather than traditional in-sample errors, for covariance matrix estimation and forecast reconciliation. Second, we introduce decision-based aggregation levels for forecasting and reconciliation, where certain horizons are tailored to the specific decisions required in operational settings. Third, we assess model performance not only by traditional accuracy metrics but also by their ability to reduce decision costs, such as penalties in ancillary services. Our results show that using validation errors improves the accuracy by more than 7 % across different temporal levels. We also demonstrate that statistical-based hierarchies tend to adopt less conservative forecasts and reduce revenue losses. On the other hand, decision-based reconciliation offers a more balanced compromise between accuracy and decision cost, while saving computational time by 2 %–3 % for simpler models and up to 93 % for more advanced models, making them attractive for practical use.
S

SunView 深度解读

该跨时序预测协调技术对阳光电源储能系统(ST系列PCS、PowerTitan)及新能源场站具有重要应用价值。论文提出的基于验证误差的协调方法可提升预测精度7%以上,能优化储能系统充放电策略,降低辅助服务罚金成本。决策导向的聚合层级设计与阳光电源iSolarCloud平台的智能运维需求高度契合,可将计算时间缩短93%,实现风光储一体化场站的实时功率预测与经济调度。该方法可嵌入GFM控制策略,提升虚拟同步发电机(VSG)的频率响应精度,增强电网友好性,为储能参与现货市场和调频服务提供决策支持。