← 返回
光伏发电技术
★ 5.0
基于自适应特征提取与时间迁移建模的分布式光伏超短期功率预测
Ultra-Short Term Power Forecasting for Distributed PV Based on Adaptive Feature Extraction and Temporal Transfer Modeling
| 作者 | Boyu Liu · Yuqing Wang · Fei Wang · Ziqi Liu · Shumin Sun · Yan Cheng |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年8月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式光伏 功率预测 自适应特征提取 时间迁移建模 泛化能力 |
语言:
中文摘要
准确的分布式光伏发电功率预测对于优化电网运行、提高经济效益以及促进新能源融合至关重要。然而,现有的分布式光伏发电功率预测方法面临着若干挑战:1)卫星云图可为缺乏专业气象测量的分布式光伏提供数据支持,但云图特征建模方法往往会忽略重要特征;2)季节变化和多变的气候条件会导致光伏输出特性在时间分布上产生变化,当数据分布发生变化时,训练好的预测模型表现不佳,导致泛化能力不足。为解决这些问题,本文提出了一种基于自适应特征提取和时间迁移建模的分布式光伏区域超短期功率预测方法。该方法将卷积神经网络的空间特征捕捉能力与基于Transformer的模型的时间序列处理机制相结合,对多源遥感信息与光伏发电功率之间的相关性进行自适应特征提取。随后,对数据分布变化进行量化,将数据划分为具有显著分布差异的序列。这使得时间迁移模型能够在时间域中提取不变的泛化特征,从而增强模型的泛化能力和预测性能。最后,利用实际的分布式光伏发电功率数据验证了所提方法的有效性。
English Abstract
Accurate distributed photovoltaic power forecasting plays a crucial role in optimizing grid operations, enhancing economic benefits, and promoting the integration of new energy sources. However, existing methods for forecasting distributed photovoltaic power face several challenges: 1) Satellite cloud images can provide data support for distributed photovoltaics that lack specialized meteorological measurements, but the methods of cloud image features modeling tend to ignore important features; 2) Seasonal changes and variable climate conditions cause temporal distribution variations in photovoltaic output characteristics, leading to poor performance of trained forecasting models when there is a variation in data distribution, resulting in inadequate generalization capabilities. To address these issues, this paper proposes a regional ultra-short-term power forecasting method for distributed photovoltaic based on adaptive feature extraction and temporal transfer modeling. This approach integrates the spatial feature capture capability of Convolutional Neural Networks with the time-series processing mechanism of Transformer-based models to perform adaptive feature extraction of the correlation between multi-source remote sensing information and photovoltaic power. Subsequently, data distribution variations are quantified to divide the data into sequences with significant distribution differences. This allows the temporal transfer model to extract invariant generalized features in the temporal domain, thereby enhancing the model's generalization ability and forecasting performance. Finally, the effectiveness of the proposed method was validated using actual distributed photovoltaic power data.
S
SunView 深度解读
该自适应特征提取与时间迁移建模技术对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。超短期功率预测可直接集成至云平台的智能诊断模块,通过自适应机制实时提取气象数据与历史出力特征,结合时间迁移学习捕捉不同天气模式下的功率波动规律,为分布式光伏电站提供15分钟至4小时级精准预测。该技术可优化SG逆变器的MPPT算法响应策略,提前调整功率输出曲线以适应电网调度需求;同时为ST储能系统提供充放电决策依据,提升储能经济性。时间迁移建模的鲁棒性特征可增强预测性维护能力,降低因功率波动导致的设备应力,延长逆变器寿命,支撑阳光电源构建更智能的新能源资产管理生态。