← 返回
基于Transformer扩散模型的风速时空概率预测
Spatio-Temporal Probabilistic Forecasting of Wind Speed Using Transformer-Based Diffusion Models
| 作者 | Hao Liu · Junqi Liu · Tianyu Hu · Huimin Ma |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 时空风速预测 概率时空扩散变压器 双空间注意力模块 双阶段时间模块 预测准确性 |
语言:
中文摘要
时空风速预测对提升能源转换效率与优化资源配置具有重要意义。现有方法在捕捉复杂的时空依赖关系及适应风速动态变化方面存在不足。为此,本文提出概率时空扩散Transformer(PSTDT)模型,结合去噪扩散生成模型与Transformer的时空建模优势。该模型引入双空间注意力模块以捕获静态位置关系与动态空间依赖,并设计双阶段时间模块建模周期间依赖与自回归特征,辅以时间自适应层归一化机制提升预测稳定性与精度。实验表明,PSTDT在多个数据集上显著优于现有方法,连续排序概率分数降低8%–20%,平均绝对误差减少7%–19%。
English Abstract
Spatio-temporal wind speed forecasting plays a crucial role in enhancing energy conversion efficiency and optimizing resource allocation, forming a cornerstone of sustainable development. However, existing methods for spatio-temporal wind speed forecasting face challenges in capturing intricate spatio-temporal dependencies and adapting to dynamic variations in wind speed data. To address these limitations, we propose the Probabilistic Spatio-Temporal Diffusion Transformer (PSTDT), a novel model that combines the generative power of denoising diffusion probabilistic models with the robust spatio-temporal modeling capabilities of Transformers. This approach introduces a dual-spatial attention module to model static positional relationships and dynamic dependencies from historical data, thereby capturing evolving spatial correlations. Additionally, PSTDT integrates a dual-phase temporal module for modeling crossperiod temporal dependencies alongside auto-regressive temporal features, enhancing its capacity to address the complexities of time-series forecasting. Furthermore, a temporal-adaptive layer normalization is incorporated to dynamically adjust normalization parameters, improving the model's forecast accuracy and stability. Extensive experiments demonstrate that PSTDT outperforms state-of-the-art methods across multiple datasets, reducing continuous ranked probability score by 8%-20% and mean absolute error by 7%-19%.
S
SunView 深度解读
该时空风速概率预测技术对阳光电源储能系统与智能运维平台具有重要应用价值。在PowerTitan大型储能系统中,精准的风速预测可优化风储协同控制策略,提升ST系列储能变流器的充放电调度精度,降低8%-20%的预测误差可显著改善储能系统的能量管理效率。该Transformer扩散模型的时空建模能力可集成至iSolarCloud平台,实现风电场群的预测性维护与功率预测,辅助构网型GFM控制策略的动态调整。双空间注意力机制对捕捉分布式风电站点间的动态依赖关系具有借鉴意义,可应用于多站点ESS集成方案的协同优化,提升新能源消纳能力与电网稳定性。