← 返回
风电变流技术
★ 5.0
非平稳GNNCrossformer:融合图信息的Transformer用于非平稳多变量时空风力发电预测
Non-stationary GNNCrossformer: Transformer with graph information for non-stationary multivariate Spatio-Temporal wind power data forecasting
| 作者 | Xinning Wuac1 · Haolin Zhanb1 · Jianming Hua · Ying Wangd |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The Non stationary GNNCrossformer is proposed for multiple wind power prediction. |
语言:
中文摘要
摘要 风电功率的时空预测对于风电系统中多个风电场的并网运行具有重要意义。然而,由于多个风电场之间存在复杂的时空依赖关系,构建先进模型以在相互影响下实现精确的风电功率预测仍面临巨大挑战。此外,大多数现有模型在处理多变量且非平稳的风电场功率数据的长期预测时表现不理想。为解决上述问题,本文提出了一种新颖的基于Transformer的模型——非平稳GNNCrossformer,用于非平稳多变量时空预测。该模型采用非平稳两阶段注意力机制(Nonstationary-Two-Stage-Attention),以同时捕捉非平稳条件下的跨时间依赖性和跨维度依赖性;同时引入一种基于切比雪夫插值的新图卷积神经网络,高效提取多个风电场随时间变化的拓扑结构信息。为应对序列可预测性与模型能力之间的矛盾,本文还提出了序列平稳化方法,以补充非平稳两阶段注意力机制。序列平稳化使序列表示更具泛化性,而非平稳两阶段注意力机制则可通过逼近从原始序列中学习到的可区分注意力,将内在的非平稳信息重新恢复为时间依赖关系。此外,相较于传统基于切比雪夫近似的图卷积神经网络,所提出的基于切比雪夫插值的新图卷积神经网络具有更快的收敛速度、更强的鲁棒性以及更优的泛化能力。在实验中,本文采用了两个真实世界的风力发电数据集对所提模型进行验证。数值实验结果表明,与当前最先进的时空模型相比,所提出的方法在预测精度和鲁棒性方面均表现出优越性能。
English Abstract
Abstract The spatiotemporal prediction of wind power is of great significance for the grid connected operation of multiple wind farms in the wind power system . However, due to the complex temporal and spatial dependencies among multiple wind farms , developing advanced models to make accurate wind power predictions under their mutual influence is equally challenging. Furthermore, most of existing models are not ideal for long-term prediction of multivariate and non-stationary wind farm power datasets. To solve these problems, this paper proposes a novel Transformer-based model named Non-stationary GNNCrossformer for non-stationary multivariate Spatio-Temporal forecasting, utilizing Nonstationary-Two-Stage-Attention for both non-stationary cross-time dependency and cross-dimension dependency, as well as using the new graph convolutional neural network with Chebyshev interpolation for extracting temporally conditioned topological information from multiple wind farms efficiently. To tackle the dilemma between series predictability and model capability, we also propose Series Stationarization to complement Nonstationary-Two-Stage-Attention. While series stationarization makes sequence representation more generalized, the Nonstationary-Two-Stage-Attention can be devised to recover the intrinsic non-stationary information into temporal dependencies by approximating distinguishable attentions learned from raw series. Besides, the new graph convolutional neural network with Chebyshev interpolation can converge faster, be more robust, and have stronger generalization ability than the traditional one with Chebyshev approximation. In our experiment, two real-world wind power datasets were used to validate the proposed model. Numerical experiments have demonstrated the effectiveness and robustness of the proposed method compared to state-of-the-art spatiotemporal models.
S
SunView 深度解读
该非平稳时空风电预测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过图神经网络与Transformer融合的多风场功率预测模型,可优化储能系统的充放电策略制定和能量管理。其非平稳序列处理能力可提升iSolarCloud平台的预测性维护精度,增强风储耦合场景下的GFM/GFL控制策略自适应性。切比雪夫插值图卷积网络的快速收敛特性,为多站点协同控制算法优化提供新思路,助力构建更智能的新能源并网解决方案。