找到 98 条结果
基于深度强化学习的逆变器控制器:增强含电弧炉电网中可再生能源的集成
Deep Reinforcement Learning Enabled Inverters: Strengthening RES Integration in Grids With Electric Arc Furnaces
Ebrahim Balouji · Özgül Salor · Safwan Al Khatib · IEEE Transactions on Industry Applications · 2024年9月
本文介绍了一种用于支撑电网的逆变器控制系统的开发,旨在将可再生能源(RES)接入电网,以应对存在诸如电弧炉(EAF)等间歇性负载的具有挑战性的工况。采用基于深度学习的方法,运用深度确定性策略梯度(DDPG)这一强化学习(RL)算法,对电网进行建模、估算电压和相角,并控制支撑电网的逆变器。目标是开发一种能产生虚拟惯量的支撑电网的逆变器,以稳定由间歇性负载引发的电网频率问题,并实现可再生能源(RES)与电力系统的无缝集成。使用DDPG无需一些传统的估算工具,如快速傅里叶变换(FFT)、同步参考坐标系...
解读: 该深度强化学习逆变器控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器在工业电网应用具有重要价值。针对电弧炉等非线性负载引起的电压波动、谐波畸变问题,可增强现有构网型GFM控制策略,实现负序与无功功率的自适应动态补偿。该技术可应用于:1)PowerTitan储能系统在钢铁、冶金等工业园区的电能...
基于多智能体强化学习的混合风电-氢能电站日前交易与功率控制
Day-ahead trading and power control for hybrid wind-hydrogen plants with multi-agent reinforcement learning
Stijn Allya · Timothy Verstraeten · Ann Nowéb · Jan Helsen · Applied Energy · 2025年1月 · Vol.401
摘要 海上风电场及混合风电-氢能电站在多个收益来源中获取收入,而每个来源均存在不确定性与权衡关系,因此最大化其整体盈利能力具有挑战性。由于电力通常在实际发电前进行交易,天气预报在电力交易策略中起着关键作用。此外,其他市场参与者交易与控制策略会影响公共电网的平衡,从而影响通过电网调频所能获得的收益。同时,电解槽的运行状态可能影响当前及近期的氢气生产潜力。为应对上述挑战,本文提出一种新颖的多智能体强化学习(MARL)方法,包含两个专门设计的强化学习(RL)智能体:一个负责日前电力市场交易,另一个负责...
解读: 该多智能体强化学习技术对阳光电源风储氢一体化系统具有重要应用价值。可应用于ST系列储能变流器与电解制氢设备的协同优化控制:日前交易智能体优化PowerTitan储能系统的电力市场竞价策略,实时控制智能体动态调节风电并网与电解槽功率分配。结合iSolarCloud平台的气象预测与市场数据,该MARL架...
基于强化学习的结构健康监测物联网传感器网络自适应电池管理
Reinforcement learning for adaptive battery management of structural health monitoring IoT sensor network
Tahsin Afroz Hoque Nishat · Jong-Hyun Jeong · Hongki Jo · Shenghao Xi 等5人 · Applied Energy · 2025年1月 · Vol.390
摘要 由电池供电的无线传感器网络(WSN)为结构健康监测(SHM)提供了一种经济且易于部署的解决方案。然而,由于传感器网络中电池损耗不均、更换电池时面临后勤规划困难,以及维持SHM所需的服务质量(QoS)等问题,其长期运行的可行性面临挑战。系统层面的电池健康管理策略对于延长WSN的寿命和可靠性至关重要,尤其是在考虑到更换电池所需的昂贵维护行程的情况下。本研究提出了一种基于强化学习(RL)的框架,旨在在保持SHM服务质量的同时,主动在系统层面上管理电池老化问题。该框架聚焦于成组电池更换,以减轻后勤...
解读: 该强化学习电池管理技术对阳光电源储能系统具有重要应用价值。文中针对无线传感网络的系统级电池健康管理策略,可直接应用于ST系列PCS和PowerTitan储能系统的BMS优化。通过RL算法实现电池组均衡老化、延长系统寿命的思路,与阳光电源大规模储能电站面临的电池一致性管理挑战高度契合。特别是其考虑光伏...
基于多智能体强化学习的社区共享储能-光伏系统用于电动汽车负荷管理
Community shared ES-PV system for managing electric vehicle loads via multi-agent reinforcement learning
Baligen Talihati · Shiyi Fu · Bowen Zhang · Yuqing Zhao 等6人 · Applied Energy · 2025年1月 · Vol.380
摘要 在全球能源转型背景下,电动汽车(EV)的快速增长已成为不可逆转的趋势。然而,大规模电动汽车的接入对电力系统的稳定性与可靠性带来了严峻挑战。本研究提出通过社区共享的储能与光伏发电(ES-PV)系统来缓解电动汽车负荷带来的压力。在多智能体强化学习(MARL)框架下,多个决策智能体协同工作,共同管理社区内的各类变量与系统,包括储能系统的充放电策略、智能电动汽车充电策略以及ES-PV系统的电价策略。通过MARL实现的协调与优化,使上述策略能够应对各变量之间的相互依赖关系及动态变化,从而提升整体系统...
解读: 该多智能体强化学习框架对阳光电源社区能源解决方案具有重要价值。研究验证了光储系统可承载38.68%电动车负荷,与公司ST系列储能变流器、SG光伏逆变器及充电桩产品形成协同。多智能体协同优化储能充放电、智能充电及电价策略的思路,可融入iSolarCloud平台,提升社区微网的GFM控制性能。光伏自消纳...
耦合计算流体动力学与深度强化学习的点吸收式波浪能转换装置在不规则波浪环境中的锁定控制
Latching control of a point absorber wave energy converter in irregular wave environments coupling computational fluid dynamics and deep reinforcement learning
Hao Qin · Haowen Sua · Zhixuan Wen · Hongjian Liangb · Applied Energy · 2025年1月 · Vol.396
摘要 本文提出了一种新颖的锁定控制模型,该模型耦合计算流体动力学(CFD)与深度强化学习(DRL),以提升点吸收式波浪能转换装置(WEC)的波浪能量捕获性能。首先,构建了一个数值波浪水槽(NWF)以生成不可预测的不规则波浪,并基于CFD模拟WEC与波浪之间的双向耦合作用,从而为DRL输入构建非线性的环境状态空间。同时,设计了一种基于软演员-评论家(Soft Actor-Critic, SAC)算法的训练方法,无需显式参数调节,实现非预测性的锁定控制智能体。其次,利用CFD-DRL耦合模型,在并行...
解读: 该CFD-DRL耦合控制技术对阳光电源储能系统具有重要借鉴价值。论文中SAC算法实现的非预测性控制策略,可应用于ST系列PCS的能量管理优化,通过深度强化学习应对电网波动的非线性特性,类似波浪能转换器应对不规则波浪。多物理场耦合仿真方法可增强PowerTitan储能系统的热管理与功率控制协同优化。该...
解锁建筑一体化光伏与电池
BIPVB)系统深度强化学习中的预测洞察力与可解释性
Yuan Gao · Zehuan Hu · Shun Yamat · Junichiro Otomo 等9人 · Applied Energy · 2025年1月 · Vol.384
摘要 可再生能源的部署以及智能能源管理策略的实施对于建筑能源系统(BES)的脱碳至关重要。尽管数据驱动的深度强化学习(DRL)在优化BES方面已取得近期进展,但仍存在显著挑战,例如缺乏针对时间序列数据观测空间的研究以及模型可解释性的不足。本文首次将未来预测信息引入DRL算法中,以构建时间序列数据的观测空间,并采用门控循环单元(GRU)和Transformer网络与DRL算法相结合,用于建筑一体化光伏与电池(BIPVB)系统的运行控制。此外,通过将前沿的Shapley加性解释(SHAP)技术与所开...
解读: 该深度强化学习优化技术对阳光电源光储一体化系统具有重要应用价值。研究中的GRU/Transformer时序预测与DRL决策框架可直接应用于ST系列储能变流器的智能调度策略,结合电价预测信息实现成本降低10%以上。SHAP可解释性分析方法可增强iSolarCloud平台的AI决策透明度,为PowerT...
基于贝叶斯鲁棒强化学习的高性能住宅建筑中空调与储能系统协同控制方法研究
Bayesian robust reinforcement learning for coordinated air conditioning and energy storage system control in high-performance residential buildings under forecast uncertainty
Luning Suna · Zehuan Hua · Mitsufusa Nitt · Shimpei Ohsugi 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 在高性能住宅建筑中,通常采用单台设备集中供冷供热的方式以在低负荷条件下提高能源效率。然而,该策略在冬季常导致频繁化霜,降低热舒适性并增加用电量。尽管强化学习在建筑能源控制方面展现出良好前景,尤其是在将天气和电价预测纳入状态变量时,但其性能在预测存在误差的情况下往往显著下降。为解决这一问题,本研究提出一种贝叶斯鲁棒强化学习方法,用于空调与电池系统的联合控制。该方法集成了一种基于物理机制的化霜评估模块,用于动态估算结霜条件下的供暖性能。在训练过程中,引入基于先验知识构建的结构化扰动以模拟真实的...
解读: 该贝叶斯鲁棒强化学习技术对阳光电源户用储能系统(如ST系列PCS)与空调协同控制具有重要应用价值。研究通过物理驱动的除霜评估模块和KL散度正则化,在预测误差下仍可降低8.2%电费,验证了算法鲁棒性。可启发iSolarCloud平台集成该算法,实现储能系统与家用空调的智能联动:利用建筑热惯性预判除霜风...
基于联邦强化学习的多连接混合动力汽车集成热能与能量隐私保护管理
Privacy-preserving integrated thermal and energy management of multi connected hybrid electric vehicles with federated reinforcement learning
Arash Khalatbarisoltani · Jie Han · Muhammad Saee · Cong-zhi Liu 等5人 · Applied Energy · 2025年1月 · Vol.385
摘要 深度强化学习(DRL)算法在针对预定义驾驶循环下开发单个混合动力电动汽车(HEV)最优能量管理策略(EMS)方面已展现出优异的性能。然而,在该研究领域中,热负荷及热管理(TM)的影响常被忽视。此外,HEV可能面临未见过的驾驶模式,从而影响EMS的整体性能。连接型HEV(C-HEV)提供了有前景的解决方案,但仍存在隐私、安全和通信负载等问题。本文提出一种基于联邦强化学习(FRL)的新型集成热能与能量管理(ITEM)方法,旨在实现多个C-HEV之间的通用化策略。该框架能够在拓展多环境学习能力的...
解读: 该联邦强化学习架构对阳光电源充电桩及储能系统具有重要价值。其隐私保护的分布式学习机制可应用于iSolarCloud平台,实现多站点充电桩协同优化而无需上传敏感数据。热管理与能量管理集成策略可迁移至ST系列PCS的温控优化,通过多储能站点联合学习提升功率变换效率和电池热管理性能。云端-边缘协同架构与阳...
基于强化学习与多目标模型预测控制的热电联产机组灵活经济运行双层优化策略
A bi-level optimization strategy for flexible and economic operation of the CHP units based on reinforcement learning and multi-objective MPC
Keyan Zhu · Guangming Zhang · Chen Zhu · Yuguang Niu 等5人 · Applied Energy · 2025年1月 · Vol.391
摘要 提升热电联产(CHP)机组的综合性能对于消纳可再生能源和实现节能减排具有重要意义。为此,本文提出一种基于强化学习(RL)与多目标模型预测控制(MOMPC)的双层优化策略,以提升CHP机组的灵活性与经济运行性能。首先,构建了CHP机组模型,并将其各类参数纳入MOMPC的滚动优化过程中,作为下层跟随者以求解基础控制问题。其次,提出了一种融合双延迟深度确定性策略梯度(TD3)算法与MOMPC的双层优化策略(TD3-MOMPC),将TD3智能体设定为上层领导者;通过分解复杂的灵活性需求与CHP机组...
解读: 该双层优化策略对阳光电源储能系统(ST系列PCS/PowerTitan)具有重要应用价值。TD3强化学习与多目标MPC结合的架构可借鉴至储能参与调频调峰场景:上层TD3智能体动态调整MPC权重和预测时域,下层MPC执行功率控制,实现灵活性与经济性平衡。该方法可优化储能系统在新能源消纳中的充放电策略,...
基于深度强化学习并考虑电驱动系统热特性的混合动力汽车能量管理策略
Energy management strategy for hybrid electric vehicles based on deep reinforcement learning with consideration of electric drive system thermal characteristics
Juhuan Qin · Haozhong Huang · Hualin Lu · Zhaojun Li · Energy Conversion and Management · 2025年1月 · Vol.332
摘要 深度强化学习已成为实现混合动力汽车在线优化能量管理的有力候选方法。然而,以往的研究尚未考虑混合电驱动系统中关键部件整体热特性对系统性能的影响。本文针对插电式混合动力汽车,提出一种基于深度确定性策略梯度算法并考虑电驱动系统热特性的能量管理策略,旨在将电池和电机的温度控制在安全范围内,同时提升车辆的整体性能。首先,构建了电池与电机的温度模型,并将其引入能量管理策略框架中;其次,采用基于深度确定性策略梯度的智能算法调节权重系数,以实现多目标之间的协调优化。基于多种典型循环工况开展了仿真实验,结果...
解读: 该深度强化学习热管理策略对阳光电源电动汽车驱动系统及储能产品具有重要价值。在电机驱动器方面,可借鉴其温度预测模型优化功率器件(SiC/IGBT)热管理,降低损耗并延长寿命;在储能PCS(ST系列)中,可应用DDPG算法实现电池热状态动态调控,提升PowerTitan等系统循环寿命;在充电桩OBC产品...
基于安全运行机制的主动配电网人机协同强化学习电压/无功控制方法
Human-in-the-loop Reinforcement Learning Method for Volt/Var Control in Active Distribution Network with Safe Operation Mechanism
Yuechuan Tao · Zhao Yang Dong · Jing Qiu · Shuying Lai 等6人 · IEEE Transactions on Sustainable Energy · 2025年6月
针对分布式能源接入带来的主动配电网运行复杂性,传统调压方法难以应对。本文提出一种融合人类经验的人机协同深度强化学习(HITL-DRL)框架,并引入安全约束裁剪的近端策略优化(SC-PPO)算法以保障学习过程的安全性。通过人类示范、反馈与对抗设置三种干预策略,提升学习效率与可解释性。仿真表明,该方法在IEEE 33节点系统中相较传统DRL算法具有更快的收敛速度与更强的鲁棒性,电压越限率降低73.4%,决策时间小于1毫秒,接近最优解性能,具备实时应用潜力。
解读: 该人机协同强化学习电压/无功控制技术对阳光电源配电网侧储能系统具有重要应用价值。SC-PPO算法的安全约束机制可直接应用于PowerTitan储能系统的电压调节策略,保障分布式光伏并网场景下的安全运行。毫秒级决策响应能力契合ST系列储能变流器的实时控制需求,73.4%的电压越限率降低可显著提升含高比...
基于AAV辅助协同干扰的认知无线电网络物理层安全增强:一种MAPPO-LSTM深度强化学习方法
Physical Layer Security Enhancement in AAV-Assisted Cooperative Jamming for Cognitive Radio Networks: A MAPPO-LSTM Deep Reinforcement Learning Approach
Jun Wang · Rong Wang · Zibin Zheng · Ruiquan Lin 等6人 · IEEE Transactions on Vehicular Technology · 2024年10月
认知无线电(CR)和能量收集(EH)技术为缓解频谱利用效率低下和能量存储容量有限等问题提供了思路。在认知无线电网络中,安全威胁,尤其是来自窃听者的威胁,可能导致信息泄露。本研究聚焦于通过自主飞行器(AAV)进行协作干扰,以提高具有能量收集功能的多用户物理层安全(PLS),从而最大化安全通信速率。在AAV辅助的EH - CR系统中,如果次用户(SUs)向主用户(PU)发送的协作干扰功率低于一定阈值,次用户就可以使用主用户占用的授权频谱频段。次用户可以从主发射机(PT)收集并使用射频(RF)能量。A...
解读: 从阳光电源的业务视角来看,该论文提出的认知无线电网络物理层安全增强技术与公司在分布式能源管理和智能通信系统方面存在潜在协同价值。 **业务相关性分析**:论文中的能量收集(EH)技术与阳光电源的储能系统业务高度契合。在大规模光伏电站和储能电站的运营中,分布式设备间的安全通信至关重要。该研究提出的射...
基于竞争深度Q网络的移动边缘计算部分卸载与资源分配深度强化学习
Deep Reinforcement Learning With Dueling DQN for Partial Computation Offloading
Ehzaz Mustafa · Junaid Shuja · Faisal Rehman · Abdallah Namoun 等6人 · IEEE Access · 2025年1月
计算卸载将IoT设备资源密集型任务转移到强大边缘服务器,最小化延迟并降低计算负载。深度强化学习广泛用于优化卸载决策,但现有研究存在两大不足:未全面优化状态空间,且Q学习和DQN在大动作空间中难以辨别最优动作。本文提出多分支竞争深度Q网络MBDDQN,解决高维状态-动作空间和动态环境长期成本优化挑战。竞争DQN缓解同步卸载和资源分配决策复杂性,每个分支独立控制决策变量子集,随IoT设备增加高效扩展,避免组合爆炸。实施LSTM网络和独特优势-价值层增强短期动作选择和长期成本估计,提升模型时序学习能力...
解读: 该多分支强化学习技术可应用于阳光电源储能系统的智能调度优化。阳光ST储能变流器在电网侧和工商业场景面临多目标优化挑战,需同时考虑能耗、响应延迟和功率分配。该MBDDQN算法的自适应权重机制可集成到阳光EMS能量管理系统,实现储能系统在削峰填谷、调频调峰和需求响应等多场景下的动态优化。结合阳光iSol...
结合MPC与深度强化学习的燃料电池/电池混合能源系统新型能量管理策略
Novel energy management strategy for fuel cell/battery hybrid energy systems combining MPC and deep reinforcement learning
Shengnan Liu · Hangyu Cheng · Seunghun Jung · Young-Bae Kim · Energy Conversion and Management · 2025年1月 · Vol.341
摘要 本文提出了一种新型的能量管理策略(EMS),用于燃料电池/电池混合能源系统,该策略通过将模型预测控制(MPC)与深度强化学习(DRL)相结合实现。所提出的EMS充分利用了MPC与DRL各自的优势,有效缓解了由于模型不确定性导致的MPC性能下降问题,同时加速了DRL的收敛过程,并增强了其对未预见工况的适应能力。具体而言,本研究首先建立了包含各部件退化特性的燃料电池/电池混合能源系统的动态模型,在此基础上构建相应的MPC模型。MPC作为基础控制器,利用线性化模型确保系统的稳定性及约束条件的满足...
解读: 该MPC与深度强化学习融合的能源管理策略对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过MPC保障系统稳定性与约束遵循,DRL优化长期决策,可显著降低燃料电池衰减51.43%并减少系统运行成本4.45%。该混合控制架构可应用于阳光电源多能互补储能系统,特别是氢储能与电池储...
基于深度强化学习的氢燃料电池列车能量与热管理协同优化策略
Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning
Kangrui Jiang · Zhongbei Tian · Tao Wen · Kejian Song 等6人 · Applied Energy · 2025年1月 · Vol.393
摘要 轨道交通脱碳已成为轨道交通行业未来发展的主要方向。氢燃料电池(HFC)列车因其零碳排放和较低的改造成本,成为具有竞争力的潜在解决方案。然而,由于氢气在储存、运输和利用方面面临的挑战,其成本较高,仍是制约HFC列车商业化的主要因素。温度对HFC的能量转换效率和寿命具有显著影响,其热管理要求比内燃机更为严格。现有的HFC列车能量管理系统(EMS)通常忽略了HFC温度变化对能量转换效率的影响,难以根据环境动态条件实现能量与热管理的实时平衡控制。为解决这一问题,本文提出一种基于深度强化学习(DRL...
解读: 该深度强化学习能量-热管理协同优化技术对阳光电源氢能及储能系统具有重要借鉴价值。其MDP建模与双深度Q学习算法可应用于ST系列PCS的多能源协调控制,实现电池SOC动态平衡与温控优化。该方法在充电站EV Solutions中可优化充电功率分配,降低设备热应力;在PowerTitan储能系统中可提升变...
新型SEPIC衍生半桥式PFC变换器用于电池充电应用
New SEPIC Derived Semi-Bridgeless PFC Converter for Battery Charging Application
Sampson E. Nwachukwu · Komla A. Folly · Kehinde O. Awodele · IEEE Access · 2025年1月
本文提出交直流半桥双开关SEPIC变换器,专为电池充电设计。通过改进结构显著降低交流输入电流总谐波畸变率,提升功率因数。变换器工作在断续导通模式以实现低电流THD,同时大幅减小电感尺寸。采用两个功率开关实现功率因数校正,主要创新在于通过电感电容能量平衡原理设计电路结构,确保低THD和单位功率因数。阻断二极管消除输入电感环流,提升效率。100W/53V原型测试显示电流THD为2.1%、单位功率因数、额定工况效率92.4%。
解读: 该PFC变换器技术与阳光电源OBC车载充电机设计理念一致。阳光OBC产品追求高功率因数、低THD和高效率,该半桥SEPIC拓扑无需额外PFC控制算法即可实现2.1% THD,优于传统方案。该技术可应用于阳光下一代OBC产品,减小电感体积,提升功率密度,在800V高压快充平台上实现更紧凑的设计和更高的...
浮体式太阳能发电系统的强化学习基准测试与原型开发:结合棕熊优化算法的实验研究与LSTM建模
Benchmarking reinforcement learning and prototyping development of floating solar power system: Experimental study and LSTM modeling combined with brown-bear optimization algorithm
Mohamed E. Zay · Shafiqur Rehman · Ibrahim A.Elgendy · Ali Al-Shaikhi 等8人 · Energy Conversion and Management · 2025年1月 · Vol.332
摘要 本研究对浮体式太阳能光伏(SFPV)系统与地面安装式太阳能光伏(GSPV)系统进行了全面的对比性实验研究、性能评估分析以及增强型人工智能(AI)建模。两种系统——SFPV与GSPV——均在沙特阿拉伯阿尔-霍巴尔巴林湾地区相同的严苛环境条件下安装、测试并进行比较,详细评估了电功率输出、光伏组件表面温度、光伏直流电压与电流,以及能量产出和效率。此外,本研究还构建了一种混合人工智能框架,该框架融合了轻量梯度提升机(LightGBM)、门控循环单元(GRU)和长短期记忆网络(LSTM)模型,并通过...
解读: 该研究对阳光电源浮式光伏系统集成具有重要价值。SFPV相比地面电站发电量提升59.25%、组件温度降低32.36%,验证了浮式方案的技术优势。LSTM-BBOA混合AI模型(R²达0.9999)可应用于iSolarCloud平台的预测性维护,优化SG系列逆变器的MPPT算法。浮式场景的温度控制特性有...
基于个性化联邦强化学习的多微电网协同优化调度低碳经济方法
Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning
Ting Yang · Zheming Xu · Shijie Ji · Guoliang Liu 等6人 · Applied Energy · 2025年1月 · Vol.378
摘要 互联多微电网(MMG)系统的协同优化调度为大规模可再生能源资源的高效利用提供了广阔前景和重要机遇。此类系统有助于实现能源资源的最优配置,并提升运行成本的经济性。然而,在协同优化调度过程中,异构微电网(MG)实体之间利益诉求的差异导致数据共享受阻,并引发隐私泄露问题。此外,多能耦合关系与高维决策过程进一步加剧了该问题的复杂性,可能导致优化过程难以收敛以及能源管理精度下降。同时,新建微电网缺乏运行数据与调度经验,制约了其调度任务的快速“冷启动”能力。为弥补上述研究空白,本文提出一种基于聚类的个...
解读: 该联邦强化学习多微网协同调度技术对阳光电源ST储能系统和iSolarCloud平台具有重要应用价值。可应用于PowerTitan储能集群的分布式优化调度,在保护各微网数据隐私前提下实现碳-电联合交易优化,降低综合成本5.78%、碳排放8.43%。其冷启动迁移策略可加速新建微网接入速度提升42.83%...
第 5 / 5 页