← 返回
基于多智能体强化学习的社区共享储能-光伏系统用于电动汽车负荷管理
Community shared ES-PV system for managing electric vehicle loads via multi-agent reinforcement learning
| 作者 | Baligen Talihati · Shiyi Fu · Bowen Zhang · Yuqing Zhao · Yu Wang · Yaojie Sun |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 380 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | DAB 可靠性分析 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Community users and the ES-PV system cooperate and compete using MARL algorithms. |
语言:
中文摘要
摘要 在全球能源转型背景下,电动汽车(EV)的快速增长已成为不可逆转的趋势。然而,大规模电动汽车的接入对电力系统的稳定性与可靠性带来了严峻挑战。本研究提出通过社区共享的储能与光伏发电(ES-PV)系统来缓解电动汽车负荷带来的压力。在多智能体强化学习(MARL)框架下,多个决策智能体协同工作,共同管理社区内的各类变量与系统,包括储能系统的充放电策略、智能电动汽车充电策略以及ES-PV系统的电价策略。通过MARL实现的协调与优化,使上述策略能够应对各变量之间的相互依赖关系及动态变化,从而提升整体系统性能。在真实场景下的案例研究表明,ES-PV系统可承担高达38.68%的电动汽车负荷,将光伏电量的自消纳率提高66.41%,并显著降低社区对配电网的依赖程度。在经济性方面,部署ES-PV系统使社区用电成本最高降低了7.73%,夏季为ES-PV系统带来51,924.65欧元的净收益,表明该方案为社区居民与ES-PV系统运营商实现了双赢。因此,该框架有助于构建更高效、更具韧性的社区能源利用模式,以适应电动汽车日益普及以及智慧社区快速发展的趋势。
English Abstract
Abstract The rapid growth of electric vehicles (EVs) is an unavoidable trend within the global energy transition. However, the substantial integration of EVs poses significant challenges to the stability and reliability of power systems . This study proposes mitigating EV load through community-shared energy storage and photovoltaic (ES-PV) systems. Within the framework of multi-agent reinforcement learning (MARL), multiple decision-making agents collaborate to manage various variables and systems in community, including energy storage charging and discharging strategies, intelligent EV charging strategies, and ES-PV system electricity pricing strategies. The coordination and optimization achieved through MARL enable these strategies to address the interdependencies and dynamic changes of the variables, thereby enhancing overall performance. Case studies in real-world scenarios demonstrate that ES-PV systems can support up to 38.68 % of EV load, increase photovoltaic self-consumption rates by 66.41 %, and significantly reduce community reliance on the distribution grid. In terms of economic performance, implementing the ES-PV system reduced community electricity expenses by up to 7.73 %, resulting in a net profit of €51,924.65 for the ES-PV system in summer. This indicates a win-win solution for both community residents and ES-PV system operators. Therefore, this framework can support a more efficient and resilient community energy utilization paradigm, accommodating the increasing prevalence of EVs and the rapid development of smart communities.
S
SunView 深度解读
该多智能体强化学习框架对阳光电源社区能源解决方案具有重要价值。研究验证了光储系统可承载38.68%电动车负荷,与公司ST系列储能变流器、SG光伏逆变器及充电桩产品形成协同。多智能体协同优化储能充放电、智能充电及电价策略的思路,可融入iSolarCloud平台,提升社区微网的GFM控制性能。光伏自消纳率提升66.41%及7.73%电费削减的经济性,为PowerTitan等储能系统在社区场景的商业化部署提供数据支撑,助力构建车-网-储一体化智慧能源生态。