← 返回
基于深度强化学习的风光水储混合能源系统长短周期协调调度
Long-Term and Short-Term Coordinated Scheduling for Wind-PV-Hydro-Storage Hybrid Energy System Based on Deep Reinforcement Learning
| 作者 | Huaiyuan Zhang · Kai Liao · Jianwei Yang · Zhe Yin · Zhengyou He |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 可靠性分析 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风光水储混合能源系统 多时间尺度调度 马尔可夫决策过程 数据 - 模型驱动解决方案 智能能源管理 |
语言:
中文摘要
针对多时间尺度调度复杂的风光水储混合能源系统,传统长期调度策略常削弱短期调节能力,导致资源浪费与电力短缺。本文提出一种将短期运行特性嵌入长期调度规则的协同框架,将长期调度建模为马尔可夫决策过程,并在每一步耦合基于优化模型生成的短期发电计划。通过融合数据驱动与模型驱动方法,利用深度强化学习简化长期决策,结合混合整数线性规划确保短期约束满足。实证表明,该方法使弃电率由11.67%降至0.63%,切负荷率从3.3%降至0.69%,显著优于传统方法。
English Abstract
For wind-photovoltaic-hydro-storage hybrid energy systems (WPHS-HES) grappling with the complexities of multiple scheduling cycles, traditional long-term strategies often impair short-term regulation capabilities, leading to extensive resource waste and critical power shortages. Thus, this paper introduces a novel framework that intricately nests short-term operational characteristics within long-term operating rules to synchronize multi-timescale scheduling for WPHS-HES. The cornerstone of our approach is the novel formulation of the long-term scheduling as a Markov Decision Process (MDP). It is integrated seamlessly with short-term generation schedules developed through an optimal model embedded at each MDP step. To achieve computational effectiveness and reliability, we propose a hybrid data-model-driven solution that harnesses the synergistic benefits of both data-driven and model-driven methodologies. By leveraging deep reinforcement learning our approach significantly streamlines long-term decision variables, while ensuring strict adherence to short-term operational constraints through mixed integer linear programming. Empirical simulations on an operational WPHS-HES validate the superior efficacy of our method over traditional scenario reduction and robust optimization techniques. The results are striking that it achieves a reduction in sustainable energy curtailment from 11.67% to 0.63% and slashes the load shedding rate from 3.3% to 0.69%, thereby setting a new benchmark for intelligent energy management in complex hybrid systems.
S
SunView 深度解读
该深度强化学习协调调度技术对阳光电源PowerTitan储能系统和iSolarCloud云平台具有重要应用价值。研究提出的长短周期协同框架可直接集成到ST系列储能变流器的能量管理系统中,通过MDP建模和DRL算法优化多时间尺度调度决策,显著降低弃电率(11.67%→0.63%)和切负荷率(3.3%→0.69%),提升风光水储混合系统的经济性与可靠性。该方法融合数据驱动与模型驱动的混合架构,可增强iSolarCloud平台的智能调度能力,为大型ESS集成方案提供更精准的长期容量规划和短期功率分配策略,有效解决传统优化方法在复杂约束下的计算瓶颈,助力阳光电源在多能互补微网和虚拟电厂场景中的技术领先地位。