← 返回
用于评估光伏系统可靠性的开放数据集
Open data sets for assessing photovoltaic system reliability
| 作者 | Xin Chen · Baojie Lia · Jennifer L.Braid · Brandon Byford · Dylan J.Colvin · Andrew Glaws · Norman Jostd · Benjamin Pierced · Salil Rabade · Martin Springer · Anubhav Jaina |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 395 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Comprehensive review of open-source data sets for assessing PV degradation. |
语言:
中文摘要
摘要 光伏(PV)系统已成为可再生能源战略的基石,特别是由于过去十年中太阳能发电成本显著降低。然而,光伏装置的长期可靠性仍是一个持续存在的挑战,需要发展先进的监测和预测性维护策略。为评估光伏系统的健康状况,使用了多种类型的数据,包括环境条件、电气性能以及巡检图像等。这些数据支持诸如用于寿命预测的机器学习(ML)模型和用于缺陷检测的计算机视觉技术等方法。然而,高质量且全面的数据获取十分困难,尤其是在长期一致性与数据多样性方面尤为突出。公开可用的数据集是应对这些挑战的宝贵资源,但它们往往存在碎片化问题,且难以访问。本文对现有与光伏老化相关的开源数据集进行了系统性综述,分析了其特征、功能及潜在应用。我们根据这些数据集所涵盖的光伏系统信息的具体方面——如环境条件、运行监测、图像检查以及组件材料——对其进行分类,并提出了相应的工具和机器学习模型以处理这些数据。此外,我们还提出了未来数据采集与使用的实践建议,同时探讨了数据驱动研究的潜在发展方向。我们的目标是提升研究人员和行业从业者对数据利用与发布的重视程度,推动深入理解数据在提升光伏系统性能与耐久性方面所起的关键作用。
English Abstract
Abstract Photovoltaic (PV) systems have become a cornerstone of renewable energy strategies, particularly due to the significant reduction in solar power costs over the past decade. However, the long-term reliability of PV installations presents a persistent challenge, requiring the development of advanced monitoring and predictive maintenance strategies. A wide range of data types is used to evaluate the health of PV systems, including environmental conditions, electrical performance, and inspection imagery. These data enable methodologies such as machine learning (ML) models for lifetime prediction and computer vision techniques for defect detection. However, the acquisition of high-quality and comprehensive data is difficult, particularly in terms of long-term consistency and data variety. Publicly available data sets serve as valuable resources for addressing these challenges, but they often suffer from fragmentation and are difficult to access. This paper presents a comprehensive review of existing open-source data sets related to PV degradation, analyzing their features, functionalities, and potential applications. We categorize these data sets based on the specific aspects of PV system information they cover, such as environmental conditions, operational monitoring, image inspection and module materials, and propose relevant tools and ML models for processing them. In addition, we propose practices for future data collection and usage, while also discussing potential directions in data-driven research. Our aim is to enhance data utilization and publication among researchers and industry professionals, promoting a deeper understanding of the role of data in enhancing the performance and durability of PV systems.
S
SunView 深度解读
该开源数据集研究对阳光电源iSolarCloud智能运维平台具有重要价值。论文系统梳理的环境数据、电气性能、缺陷图像等多维数据类型,可直接应用于SG系列逆变器和PowerTitan储能系统的预测性维护算法优化。特别是机器学习模型与计算机视觉技术结合,能提升我司光伏电站全生命周期健康管理能力。建议将论文提出的数据采集规范融入iSolarCloud平台,构建更完善的退化预测模型,增强ST系列PCS和1500V系统的长期可靠性监测功能,形成数据驱动的智能运维竞争优势。