← 返回
光伏发电技术 储能系统 可靠性分析 ★ 5.0

基于热成像驱动的卷积神经网络预测太阳能光伏组件热点寿命

Thermal image-driven CNN for predicting solar photovoltaic module lifespan from hotspots

作者 Ashwini Raoran · Dhiraj Magar · Yogita Mistr
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 302 卷
技术分类 光伏发电技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏组件 可靠性研究 环境因素 组件降解 热致降解
语言:

中文摘要

摘要 光伏(PV)组件的可靠性研究目前仍处于发展阶段。影响系统性能下降的环境因素已得到研究,这些因素依赖于环境条件、技术类型、设计以及所使用的材料。因此,对这些因素进行详细分析至关重要,以便能够量化组件的退化程度。当前面临的挑战主要来自热致退化,其中热点的形成会加速老化过程,缩短组件使用寿命,直接影响系统的经济性和可靠性。现有的检测方法缺乏对寿命进行定量评估的预测能力,限制了有效的维护规划和投资决策。本研究提出了一种改进的卷积神经网络(Mod-CNN),该网络利用热成像图像,结合退化机制来预测太阳能光伏组件的使用寿命。所提出的模型将热点热成像图与其对应的平均温度数据相结合,训练一种具有增强注意力机制的专用CNN架构,以实现对热分布模式的精准识别。这一创新方法将基于物理的退化建模(通过Peck模型)与先进的机器学习技术相结合,在性能上取得了显著突破,决定系数R²达到0.97,远超传统方法。通过对多个数据集的全面验证,证实了该模型在准确预测太阳能组件运行寿命方面的有效性。在本研究中,热图像中热点的平均温度及其相应的退化数据构成了在MATLAB中实现的深度学习模型的训练基础。结果表明,该模型在预测太阳能组件寿命方面具有良好的效果。从实际应用角度来看,本研究对于太阳能光伏安装领域的规划人员、安装工程师、终端用户以及金融机构均具有重要意义。

English Abstract

Abstract Abstract Reliability research on photovoltaic (PV) modules is still underdeveloped. Environmental factors involved in decreasing system performance are studied. They depend on environmental conditions, technology, design and materials used. It is essential therefore, a detailed study on these factors to then be able to quantify module degradation. Current challenges stem from thermal-induced degradation, where hotspot formation accelerates aging processes and reduces module lifespan, directly impacting system economics and reliability. Existing inspection methods lack predictive capabilities for quantitative lifetime assessment, limiting effective maintenance planning and investment decision making. This research proposes a modified convolutional neural network (Mod-CNN) that uses thermal images to predict the lifespan of solar PV based on degradation techniques. The proposed model integrates thermal hotspot images with the corresponding average temperature data to train a specialized CNN architecture that features enhanced attention mechanisms for thermal pattern recognition. This novel approach combines physics-based degradation modeling via the Peck model with advanced machine learning techniques, achieving exceptional performance with R 2 (0.97), significantly surpassing conventional methodologies. Comprehensive validation across multiple datasets confirms the effectiveness of the model in accurately predicting solar module operational lifespan. In this research work, the average hotspot temperature and its corresponding degradation data for thermal images serve as the training foundation for the deep learning model implemented in MATLAB. The results demonstrate the effectiveness of the model in predicting the lifespan of solar module. This research work is especially important from a practical point of view in the solar PV installation field for planners, installers, consumers, and financers.
S

SunView 深度解读

该热成像CNN预测技术对阳光电源SG系列光伏逆变器和iSolarCloud智慧运维平台具有重要应用价值。通过集成热斑识别与寿命预测模型,可增强MPPT优化算法的故障预判能力,实现从被动巡检到主动预测性维护的升级。该技术可嵌入iSolarCloud平台,结合逆变器实时监测数据,构建电站级健康度评估体系,为PowerTitan储能系统的PCS热管理提供降额设计依据,延长组件全生命周期,降低LCOE,提升系统可靠性与投资回报率。