找到 1 条结果
基于热成像驱动的卷积神经网络预测太阳能光伏组件热点寿命
Thermal image-driven CNN for predicting solar photovoltaic module lifespan from hotspots
Ashwini Raoran · Dhiraj Magar · Yogita Mistr · Solar Energy · 2025年1月 · Vol.302
摘要 光伏(PV)组件的可靠性研究目前仍处于发展阶段。影响系统性能下降的环境因素已得到研究,这些因素依赖于环境条件、技术类型、设计以及所使用的材料。因此,对这些因素进行详细分析至关重要,以便能够量化组件的退化程度。当前面临的挑战主要来自热致退化,其中热点的形成会加速老化过程,缩短组件使用寿命,直接影响系统的经济性和可靠性。现有的检测方法缺乏对寿命进行定量评估的预测能力,限制了有效的维护规划和投资决策。本研究提出了一种改进的卷积神经网络(Mod-CNN),该网络利用热成像图像,结合退化机制来预测太...
解读: 该热成像CNN预测技术对阳光电源SG系列光伏逆变器和iSolarCloud智慧运维平台具有重要应用价值。通过集成热斑识别与寿命预测模型,可增强MPPT优化算法的故障预判能力,实现从被动巡检到主动预测性维护的升级。该技术可嵌入iSolarCloud平台,结合逆变器实时监测数据,构建电站级健康度评估体系...