← 返回
基于联邦强化学习的多连接混合动力汽车集成热能与能量隐私保护管理
Privacy-preserving integrated thermal and energy management of multi connected hybrid electric vehicles with federated reinforcement learning
| 作者 | Arash Khalatbarisoltani · Jie Han · Muhammad Saee · Cong-zhi Liu · Xiaosong Hu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 385 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 强化学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A privacy-preserving FRL-based ITEM approach is designed to collaboratively control multi HEVs. |
语言:
中文摘要
摘要 深度强化学习(DRL)算法在针对预定义驾驶循环下开发单个混合动力电动汽车(HEV)最优能量管理策略(EMS)方面已展现出优异的性能。然而,在该研究领域中,热负荷及热管理(TM)的影响常被忽视。此外,HEV可能面临未见过的驾驶模式,从而影响EMS的整体性能。连接型HEV(C-HEV)提供了有前景的解决方案,但仍存在隐私、安全和通信负载等问题。本文提出一种基于联邦强化学习(FRL)的新型集成热能与能量管理(ITEM)方法,旨在实现多个C-HEV之间的通用化策略。该框架能够在拓展多环境学习能力的同时,保障本地HEV数据的隐私性与安全性。所提出的FRL算法在多个HEV与基于云的中心之间迭代执行,以协同生成适用于所有ITEM的全局策略。对于每个ITEM,两个DRL智能体(座舱热管理与能量管理策略)基于记录的驾驶数据构建其局部策略。仅在云端中心与各ITEM之间交换局部和全局模型参数,从而降低通信开销并保护驾驶数据隐私。研究结果成功表明,该方法在收敛速度方面具有优势,并能够实现与预先获取驾驶循环信息的DRL策略相当的总奖励表现。此外,我们还证明了当额外的DRL智能体加入FRL网络时,所提方法仍能保持优异的性能。该方法的可行性亦通过硬件在环(HIL)测试平台得到了验证。
English Abstract
Abstract Deep reinforcement learning (DRL) algorithms have demonstrated impressive performance in developing optimal energy management strategies (EMSs) for individual hybrid electric vehicles (HEVs) under predefined driving cycles. However, in this area of research, the impact of thermal loads and thermal management (TM) is often overlooked. Moreover, HEVs may encounter unseen driving patterns that can hinder the overall performance of EMS. Connected HEVs (C-HEVs) show promising solutions; however, there are existing issues such as privacy, security, and communication loads. This paper proposes a novel integrated thermal and energy management (ITEM) approach based on federated reinforcement learning (FRL) for achieving a generalized policy across multiple C-HEVs. This framework broadens learning from multiple environments while preserving local HEV data privacy and security. The proposed FRL algorithm is iteratively executed between multiple HEVs and a cloud-based center to develop global policies for all ITEMs. For each ITEM, two DRL agents (cabin TM and EMS) build their local policies based on recorded driving data. The only local and global models exchanged between the cloud-based center and the ITEMs reduce communication overhead and preserve driving data privacy. Our findings successfully demonstrate that this approach has the advantage of accelerating convergence speed and achieving total rewards similar to the DRL strategy, which has access to driving cycle information in advance. Furthermore, we demonstrate that the proposed approach delivers excellent performance even when additional DRL agents join the FRL network. The implementation capability is also verified by a hardware-in-the-loop (HIL) test setup.
S
SunView 深度解读
该联邦强化学习架构对阳光电源充电桩及储能系统具有重要价值。其隐私保护的分布式学习机制可应用于iSolarCloud平台,实现多站点充电桩协同优化而无需上传敏感数据。热管理与能量管理集成策略可迁移至ST系列PCS的温控优化,通过多储能站点联合学习提升功率变换效率和电池热管理性能。云端-边缘协同架构与阳光电源智慧运维体系高度契合,可加速充电站能量调度策略收敛,降低通信开销,为构建隐私安全的新能源车网互动生态提供技术路径。