← 返回
电动汽车驱动 储能系统 户用光伏 ★ 5.0

一种将可再生能源社区与加氢站结合于氢气生产中的序贯决策框架

A sequential decision-making framework for integrating renewable energy communities and refueling stations in hydrogen production

作者 Mohammad Reza Salehizadeha1 · Muhammed Ali Beyazıtb1 · Akin Tascikaraoglu · Jay Liu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 387 卷
技术分类 电动汽车驱动
技术标签 储能系统 户用光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A mutual support mechanism between RECs and refueling stations is introduced.
语言:

中文摘要

摘要 为了满足燃料电池电动汽车(FCEV)日益增长的数量,建立一种可持续的氢气供应方法已成为当务之急。在此背景下,本文提出的方法利用住宅屋顶光伏(PV)面板产生的过剩电力,支持加氢站进行绿色氢气生产。为实现这一目标,我们建议组建若干可再生能源社区(REC),以聚合过剩电力。作为回报,聚合后的加氢站根据各REC在支持氢气生产方面的贡献,在需求响应(DR)时段向REC内的家庭用户提供相应的能源信用额度。加氢站配备有社区储能系统(CESS),用于储存电能,并在DR时段将电能回馈给REC。为实施该构想,本文引入了一种包含三个基于优化步骤的序贯决策过程。在步骤1中,REC确定可用于氢气生产的过剩电力及其在DR时段的电力需求。在步骤2中,加氢站的协调方评估REC提供的电能,批准所需电量,并确定应分配给各REC的相应能源信用额度。最后,在步骤3中,REC将未获批准的过剩电能出售给电网,并在家庭用户之间公平分摊任何未满足的负荷。所提出的方法通过三个案例研究进行了测试,其中包括在美国德克萨斯州奥斯汀市的一个基准案例,采用了真实数据与补充近似数据的组合。结果表明,参与的家庭用户的电力成本降低了11.1%至28.7%,具体取决于测试日期。此外,在所提出的案例中,利用CESS储存的能源使DR时段的电力短缺减少了21.4%至66.4%。从加氢站协调方的角度来看,电解槽生产的氢气中约有3.0%至4.7%可通过REC的贡献得到补充。

English Abstract

Abstract To meet the ever-increasing number of Fuel Cell Electric Vehicles (FCEVs), establishing a sustainable method for hydrogen provision has become essential. In this context, the methodology presented in this paper proposes using excess power generated from residential rooftop photovoltaic (PV) panels to support refueling stations for green hydrogen production . To achieve this, we propose forming a set of Renewable Energy Communities (RECs) to aggregate excess power. In return, the aggregated refueling stations provide energy credits to support households in the RECs during demand response (DR) periods, based on their contributions to hydrogen production support. Refueling stations are equipped with Community Energy Storage System (CESS) to store electrical energy and provide it back to RECs during DR periods. To implement this concept, a sequential decision-making procedure, including three optimization-based steps, is introduced. In Step 1, RECs determine the available excess power for hydrogen production and their power requirements during DR periods. In Step 2, a coordinator at the refueling station evaluates the electrical energy offered by RECs, approves the required amount, and determines the corresponding energy credits to be allocated to them. Finally, in Step 3, RECs sell any unapproved excess electrical energy to the grid and fairly allocate any lost load among households. The proposed methodology was tested through three case studies, including a Base Case in Austin, Texas, using a combination of real and additional approximated data. Results show that participating households achieved electrical energy cost reductions of up to 11.1%–28.7% depending on the test day. Furthermore, in the proposed case, leveraging stored energy from the CESS reduced electrical energy shortfalls during DR periods by 21.4%–66.4%. From the perspective of the refueling station coordinator, approximately 3.0%–4.7% of the hydrogen produced by the electrolyzers can be supplemented through REC contributions.
S

SunView 深度解读

该文提出的光伏-储能-氢能耦合架构与阳光电源产品线高度契合。户用光伏余电聚合场景可应用SG系列逆变器的MPPT优化技术提升发电效率;社区储能系统(CESS)可部署PowerTitan或ST系列PCS实现双向能量调度;需求响应期间的削峰填谷需求验证了储能系统快速响应能力的价值。文中提出的三阶段优化决策框架可为iSolarCloud平台的能量管理算法提供参考,特别是在虚拟电厂场景下协调分布式光伏、储能与充电站的协同运行,助力构建光储充氢一体化解决方案。