← 返回
基于模仿专家经验的可解释深度强化学习在电动汽车智能充电中的应用
Interpretable Deep Reinforcement Learning With Imitative Expert Experience for Smart Charging of Electric Vehicles
| 作者 | Shuangqi Li · Alexis Pengfei Zhao · Chenghong Gu · Siqi Bu · Edward Chung · Zhongbei Tian |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年7月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 微电网 可靠性分析 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 深度强化学习 电动汽车充电管理 模仿学习框架 车网互动 微电网 |
语言:
中文摘要
深度强化学习(DRL)因计算效率高,有望实现复杂系统的在线优化控制,但其可解释性与可靠性限制了在智能电网能量管理中的工程应用。本文首次提出一种新颖的模仿学习框架,用于解决电网连接电动汽车(GEV)充电管理中的高效计算问题。通过基于车网互动(V2G)成本效益分析的先验优化模型生成最优策略,并构建专家经验池以配置学习环境。设计双Actor-Imitator网络结构,实现专家知识向强化学习模型的有效迁移,提升训练效率与调度性能。实验结果表明,该方法在英国某示范微网中有效提升了V2G经济效益并缓解了电池老化。
English Abstract
Deep reinforcement learning (DRL) is a promising candidate for realizing online complex system optimal control because of its high computation efficiency. However, the interpretability and reliability problems limit its engineering application in smart grid energy management. This paper for the first time designs a novel imitative learning framework to provide a reliable solution for computation-efficient grid-connected electric vehicles (GEVs) charging management in smart grids. The optimal strategies are derived by a priors optimization model based on vehicle-to-grid (V2G) cost-benefit analysis. With better interpretability and ensured optimality, the derived strategies are used to construct an experience pool for configuring the learning environment. Then, a novel imitative learning mechanism is designed to facilitate the knowledge transfer between expert experience and reinforcement learning model. Further, a novel dual actor-imitator learning network to enable flexible scheduling of V2G power of GEVs. With the dual network structure, the expert experience can be effectively utilized to enhance the training efficiency and performance of the DRL-based V2G coordinator. The effectiveness of the developed method in improving V2G benefit and mitigating battery aging is validated on a demonstrative microgrid in the U.K.
S
SunView 深度解读
该可解释深度强化学习技术对阳光电源充电桩产品线及储能系统具有重要应用价值。文章提出的模仿学习框架可直接应用于阳光电源V2G充电桩的智能调度算法,通过专家经验池加速DRL训练,提升充电策略的可靠性与可解释性,解决传统黑盒AI在电网能量管理中的工程化难题。该方法可集成至iSolarCloud云平台,实现微电网场景下电动汽车与PowerTitan储能系统的协同优化,在保障电池寿命的前提下最大化V2G经济效益。双Actor-Imitator网络架构为阳光电源开发下一代智能充电桩控制器提供了算法创新思路,特别适用于光储充一体化场景的实时能量管理与需求响应优化。