← 返回
基于无模型深度强化学习的微电网能量管理
Energy Management in Microgrids Using Model-Free Deep Reinforcement Learning Approach
| 作者 | Odia A. Talab · Isa Avci |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 充电桩 微电网 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 微电网 可再生能源 实时能量管理 深度确定性策略梯度算法 成本降低 |
语言:
中文摘要
随着智能电网技术的发展,微电网在整合风能、太阳能等可再生能源方面发挥着关键作用。然而,可再生能源的间歇性及电动汽车与快充站负荷的增长,给微电网运行的稳定性与效率带来挑战。本文提出一种无模型的实时能量管理策略,无需传统不确定性建模即可应对源荷双重不确定性。将问题建模为马尔可夫决策过程,并采用基于Actor-Critic架构的深度确定性策略梯度算法实现动态优化。仿真结果表明,该方法总成本降至51.8770 €ct/kWh,较Dueling DQN和DQN分别降低3.19%和4%,验证了其在现代微电网能量管理中的有效性、鲁棒性与可扩展性。
English Abstract
Electric power systems are undergoing rapid modernization driven by advancements in smart-grid technologies, and microgrids (MGs) play a crucial role in integrating renewable energy sources (RESs), such as wind and solar energy, into existing grids. MGs offer a flexible and efficient framework for accommodating dispersed energy resources. However, the intermittent nature of renewable sources, coupled with the rising demand for Electric Vehicles (EVs) and fast charging stations (FCSs), poses significant challenges to the stability and efficiency of microgrid (MG) operations. These challenges stem from the uncertainties in both energy generation and fluctuating demand patterns, making efficient energy management in MG a complex task. This study introduces a novel model-free strategy for real-time energy management in MG aimed at addressing uncertainties without the need for traditional uncertainty modeling techniques. Unlike conventional methods, the proposed approach enhances MG performance by minimizing power losses and operational costs. The problem is formulated as a Markov Decision Process (MDP) with well-defined objectives. To optimize decision-making, an actor-critic-based Deep Deterministic Policy Gradient (DDPG) algorithm is developed, leveraging reinforcement learning (RL) to adapt dynamically to changing system conditions. Comprehensive numerical simulations demonstrated the effectiveness of the proposed strategy. The results show a total cost of 51.8770 €ct/kWh, representing a reduction of 3.19% compared to the Dueling Deep Q Network (Dueling DQN) and 4% compared to the Deep Q Network (DQN). This highlights the robustness and scalability of the proposed model-free approach for modern MG energy management.
S
SunView 深度解读
该无模型深度强化学习能量管理技术对阳光电源微电网解决方案具有重要应用价值。可直接应用于PowerTitan储能系统与ST系列储能变流器的能量调度优化,通过DDPG算法实现光伏-储能-充电桩的实时协同控制,无需复杂的不确定性建模即可应对源荷波动。该方法可集成至iSolarCloud云平台,提升微电网EMS的自适应能力,特别适用于含大量充电桩的工商业储能场景。Actor-Critic架构的连续动作输出特性与储能变流器的功率连续调节特性高度契合,相比传统规则控制可降低3-4%运行成本,为阳光电源智能微网控制器提供AI增强方案,增强产品在复杂场景下的市场竞争力。