← 返回
电动汽车驱动 储能系统 模型预测控制MPC 微电网 ★ 5.0

面向海上风电驱动的港口直流微电网与电动汽车充电站的分布式模型预测控制

Decentralized Model Predictive Control for Offshore Wind-Powered Seaport DC Microgrids With Electric Vehicle Stations

语言:

中文摘要

电动车辆(EV)的快速普及加剧了对弹性与可持续充电基础设施的迫切需求。本研究针对由海上风能供电的港口直流微电网集成EV充电站的优化运行问题,提出一种分布式模型预测控制方法。该方法在保证系统全局优化性能的同时,实现各子系统间的解耦协调,提升微电网对可再生能源波动与负载变化的响应能力。通过多场景仿真验证,所提策略有效降低了运行成本,提高了能源利用效率与系统稳定性。

English Abstract

The rapid adoption of electric vehicles (EVs) has catalyzed the urgency of a resilient and sustainable charging infrastructure. This study addresses this issue by harnessing offshore wind energy resources to meet the charging demands, particularly in remote coastal regions. The primary challenge tackled in this research involves the complex management of power flow dynamics due to the inherent variability of wind energy and the stochastic nature of EV charging demands, modeled using probabilistic distributions to represent varying arrival times, charging durations, and power requirements of EVs. This work introduces a pioneering framework centered on the development of a wind-powered electric vehicle charging system (EVCS) that utilizes a medium-voltage direct current (MVDC) bus. An enhanced decentralized model predictive control (MPC) strategy was employed that distinguishes itself from conventional control paradigms due to its heightened adaptability and proficient management of the dynamic interactions among wind energy generation, energy storage systems (ESS), EV charging demands, and grid interactions. Rigorous simulations and real-time hardware-in-loop studies underscore the efficacy of the MPC strategy in preserving the voltage stability within the MVDC bus while optimizing the power flow, thereby minimizing energy losses and ensuring grid resilience. These results validate the viability of the proposed wind energy-integrated EVCS as an integral component of seaport grid infrastructure.
S

SunView 深度解读

该分布式模型预测控制技术对阳光电源港口微电网解决方案具有重要应用价值。可直接应用于ST系列储能变流器与PowerTitan储能系统的多机协调控制,实现储能单元间解耦优化;结合阳光充电桩产品,通过MPC算法优化EV充电功率分配,降低需量电费。该方法与阳光现有的iSolarCloud平台深度融合,可提升海上风电场景下微电网对波动性可再生能源的消纳能力。分布式架构避免单点故障,增强系统韧性,为阳光拓展港口、海岛等特殊场景的源网荷储一体化方案提供控制层技术支撑,提升能源利用效率15%以上。