← 返回
基于循环神经网络与SustainaBoost增强的微电网在线流驱动能量管理
Online Stream-Driven Energy Management in Microgrids Using Recurrent Neural Networks and SustainaBoost Augmentation
| 作者 | Younes Ghazagh Jahed · Seyyed Yousef Mousazadeh Mousavi · Saeed Golestan |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年11月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 微电网 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 微电网 可再生能源 电动汽车 能源管理策略 循环神经网络 |
语言:
中文摘要
近年来,可再生能源和电动汽车的广泛接入使微电网运行面临显著的供需不确定性。本文提出一种面向并网型微电网的在线流驱动能量管理策略,结合循环神经网络(RNN)实现对时序数据的学习与实时决策,并引入名为SustainaBoost(SB)的增强技术以提升系统可持续性与神经网络训练质量,有效应对噪声数据影响。实验结果表明,所提RNN模型在测试集上实现98.7%的最优运行成本降低性能。
English Abstract
In recent years, the operation of microgrids (MG) has faced increasing challenges due to the growing penetration of renewable energy sources (RES) and the integration of electric vehicles (EVs), which introduce significant uncertainties in power supply and demand dynamics. In response, neural network-based approaches emerge as promising solutions, adept at handling vast databases and learning diverse patterns for real-time decision-making. This paper proposes an online stream-driven energy management strategy for efficient grid-connected MG power management and cost minimization. The strategy considers the presence of EVs and RES, while also addressing the impact of noisy data. The strategy incorporates a recurrent neural network (RNN) to learn from time-series data and make real-time decisions. Additionally, an augmentation technique called SustainaBoost (SB) is introduced, designed to boost system sustainability and enhance the training quality of neural networks. The proposed RNN achieves 98.7% optimality in minimizing the operational costs of the MG on the test dataset.
S
SunView 深度解读
该在线流驱动能量管理技术对阳光电源ST系列储能变流器和PowerTitan储能系统具有重要应用价值。RNN时序学习能力可集成至iSolarCloud平台,实现微电网场景下光伏-储能-充电桩的实时协调优化,提升98.7%成本降低性能直接对应储能系统经济性提升。SustainaBoost抗噪声增强技术可应用于ESS集成方案的BMS数据处理,增强光伏功率波动和EV充电负荷不确定性环境下的控制鲁棒性。该方法与阳光现有GFM/VSG控制技术结合,可为工商业微电网提供边缘侧智能决策能力,减少云端通信延迟,支撑构网型储能系统的自主运行与预测性维护功能升级。