← 返回
电动汽车驱动 下垂控制 微电网 深度学习 ★ 5.0

一种基于神经网络虚拟阻抗的双向电网逆变器控制新方法以改善微电网动态性能

A Novel Bi-Directional Grid Inverter Control Based on Virtual Impedance Using Neural Network for Dynamics Improvement in Microgrids

作者 Mohamad Alzayed · Michel Lemaire · Hicham Chaoui · Daniel Massicotte
期刊 IEEE Transactions on Power Systems
出版日期 2024年5月
技术分类 电动汽车驱动
技术标签 下垂控制 微电网 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 微电网 下垂控制技术 神经网络 虚拟阻抗 功率跟踪
语言:

中文摘要

在微电网中,电压源逆变器通常采用下垂控制技术,并结合电压和内部电流控制回路,以实现可靠的电力供应。由于线路阻抗不匹配,标准下垂控制技术难以实现功率的均匀分配,并限制并联连接之间的环流,尤其是在高度非线性系统中。本研究旨在引入一种基于神经网络的虚拟阻抗,并将其与双向电网逆变器控制技术相结合,以提高微电网动态运行期间的稳定性。为了在各种运行场景下以较小的偏差和更好的稳定性准确跟踪需求和参考功率,所提出的技术采用前馈神经网络(FFNN)来学习逆变器暂态过程中的非线性模型。该技术无需额外的调节步骤,仅需增加补偿电压。利用功率硬件在环(PHIL)技术,在各种动态场景下对所提出的FFNN控制器进行了广泛的暂态稳定性分析、功率跟踪和运行性能评估。此外,在IEEE 33节点标准配电系统上验证了所提出方法的鲁棒性和性能。将所有研究结果与成熟的传统技术进行对比,以证明其有效性。

English Abstract

In microgrids, the voltage source inverters often use the droop control technique along with voltage and inner current control loops to achieve a reliable electrical supply. Because of the unmatched line impedance, the standard droop control technique makes it difficult to uniformly distribute power and limit circulating flow across parallel connections, especially in highly nonlinear systems. The purpose of this research is to introduce a neural network-based virtual impedance integrated with a bi-directional grid inverter control technique that improves stability during the dynamic operation of microgrids. In order to track demand and reference power accurately with less deviation and better stability under various operating scenarios, the suggested technique employs the Feed-Forward Neural Network (FFNN) to learn the nonlinear model during the transient state of the inverter. It consists of adding compensation voltages without any further tuning procedure. The proposed FFNN controller's extensive transient stability analysis, power tracking, and operational performance are assessed in various dynamic scenarios using the power hardware-in-the-loop (PHIL) technique. In addition, the robustness and performance of the proposed approach are validated on the IEEE 33-bus standard distribution system. All findings are compared to the tried-and-true conventional technique to demonstrate its efficacy.
S

SunView 深度解读

该神经网络自适应虚拟阻抗控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。当前阳光电源储能系统采用下垂控制实现多机并联功率分配,但线路阻抗不匹配和负载突变会影响动态响应。该研究提出的神经网络在线调节虚拟阻抗方案,可直接应用于ST储能变流器的控制算法优化,提升多台变流器并联时的功率分配精度和动态稳定性。特别适用于构网型GFM控制模式下的孤岛微电网场景,增强系统对复杂工况的自适应能力。该技术可与阳光电源现有VSG虚拟同步机控制策略结合,为iSolarCloud平台提供智能参数优化功能,提升储能系统在工商业微电网中的运行可靠性。