← 返回
风电变流技术 强化学习 ★ 5.0

基于多智能体强化学习的混合风电-氢能电站日前交易与功率控制

Day-ahead trading and power control for hybrid wind-hydrogen plants with multi-agent reinforcement learning

作者 Stijn Allya · Timothy Verstraeten · Ann Nowéb · Jan Helsen
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 风电变流技术
技术标签 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Integrated strategy: power control of hybrid wind-hydrogen plant is embedded into day-ahead power trading strategy.
语言:

中文摘要

摘要 海上风电场及混合风电-氢能电站在多个收益来源中获取收入,而每个来源均存在不确定性与权衡关系,因此最大化其整体盈利能力具有挑战性。由于电力通常在实际发电前进行交易,天气预报在电力交易策略中起着关键作用。此外,其他市场参与者交易与控制策略会影响公共电网的平衡,从而影响通过电网调频所能获得的收益。同时,电解槽的运行状态可能影响当前及近期的氢气生产潜力。为应对上述挑战,本文提出一种新颖的多智能体强化学习(MARL)方法,包含两个专门设计的强化学习(RL)智能体:一个负责日前电力市场交易,另一个负责风电场与电解槽的近实时功率控制。该RL系统基于比利时北海海域一座大型海上风电场的SCADA数据以及比利时控制区的长期电力市场数据进行训练。研究分析并比较了多种不同电解槽容量配置和氢气市场价格的情景。结果表明,该方法有效提升了混合电站的整体运营利润,两个RL智能体协同工作,在含氢气生产和不含氢气生产的所有情景下,均显著优于传统方法。此外,研究还表明,尽管RL智能体以利润最大化为目标,但其策略对电网整体稳定性并未造成显著影响。

English Abstract

Abstract Offshore wind farms and hybrid wind-hydrogen plants derive revenue from multiple revenue sources, each subject to uncertainties and trade-offs. As a consequence, maximizing their overall profitability is challenging. Since electricity is typically traded ahead of its actual generation, weather forecasts play a crucial role in the power trading strategy. Additionally, the trading and control strategies of other market participants influence the balance of the public grid, affecting the revenue that can be generated by grid balancing. Moreover, the operational status of the electrolyzer may impact both the immediate and near-term hydrogen production potential. To address these challenges, we propose a novel multi-agent reinforcement learning (MARL) approach with two specialized reinforcement learning (RL) agents: one for day-ahead power trading, and a second for near-real-time power control of the wind farm and electrolyzer. The RL system is trained on SCADA data from a large offshore wind farm in the Belgian North Sea and on long-term power market data from the Belgian control area. Multiple scenarios with various electrolyzer ratings and hydrogen market prices are examined and compared. Results demonstrate the effectiveness of this approach, with the RL agents collaboratively maximizing the total operational profit of the hybrid plant, achieving a significantly higher profitability compared to conventional methods, both for the scenarios with and without hydrogen production. Furthermore, it is demonstrated that, despite the profit-maximizing objective for the RL agents, their policy does not affect overall grid stability significantly.
S

SunView 深度解读

该多智能体强化学习技术对阳光电源风储氢一体化系统具有重要应用价值。可应用于ST系列储能变流器与电解制氢设备的协同优化控制:日前交易智能体优化PowerTitan储能系统的电力市场竞价策略,实时控制智能体动态调节风电并网与电解槽功率分配。结合iSolarCloud平台的气象预测与市场数据,该MARL架构可显著提升风储氢多能互补电站的整体收益率,同时通过VSG虚拟同步机技术保障电网稳定性,为阳光电源拓展海上风电制氢市场提供智能调度解决方案。