← 返回
风电变流技术 强化学习 ★ 5.0

基于SPP拓扑的海上风电场直流集电系统布局优化

DC Collector System Layout Optimization for Offshore Wind Farm With SPP Topology

作者 Chunyang Pan · Shuli Wen · Miao Zhu · Jianjun Ma · Chuanchuan Hou
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年12月
技术分类 风电变流技术
技术标签 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 海上风电场 集电系统布局优化 分层强化学习 直流串并并拓扑 经济效率
语言:

中文摘要

随着全球海上风电的快速发展,风电场规模不断扩大,提升整体经济性至关重要。现有研究多集中于直流串并联(SP)拓扑,成本较高。本文提出一种基于分层强化学习(HRL)的优化框架,采用先进的直流串-并-并(SPP)拓扑以提升经济性。该框架通过分层开环多旅行商问题(HOMTSP)建模SPP结构,并将集电系统布局优化(CSLO)分解为子问题,采用分层双Q学习(DQL)求解,结合拓扑引导机制修正交叉线路。基于真实风电场GIS数据与机组连接方案的案例研究表明,所提方法较直流SP和交流双端环状拓扑显著提升经济性。

English Abstract

With the rapid development of global offshore wind power, the scale and capacity of offshore wind farms (OWF) are continuously expanding, making it crucial to enhance the overall economic efficiency of OWFs. However, previous studies on DC collector systems of OWFs mainly focus on the DC series-parallel (SP) topology, which escalates the overall costs. To optimize the collector system layout, this paper proposes a novel hierarchical reinforcement learning (HRL) based framework for improving the overall economic efficiency by leveraging an advanced DC series-parallel-parallel (SPP) topology. In the proposed framework, a hierarchical open-loop multiple travelling salesman problem (HOMTSP) is utilized to model the SPP topology, decomposing the collector system layout optimization (CSLO) problem into sub-problems for resolution. Subsequently, a hierarchical double Q-learning (DQL) is employed to solve these sub-problems, with a topology-guided mechanism to refine the routing results and correct crossed cables by incorporating topological characteristics. Furthermore, this study acquires the GIS data and the connection scheme of wind turbines in a real OWF for the case study. Numerical results show the SPP-based framework significantly improves the economic efficiency compared to the DC SP topology and the AC double-sided ring topology.
S

SunView 深度解读

该研究的SPP拓扑优化方法对阳光电源的海上风电和储能产品线具有重要参考价值。首先,优化后的直流集电系统布局可直接应用于我司ST系列储能变流器的集成设计,提升大型储能电站的经济性。其次,文中的分层强化学习框架可用于优化PowerTitan储能系统的拓扑结构和功率分配策略。此外,该方法也可迁移应用到SG系列逆变器的多机并联系统优化。通过引入SPP拓扑和智能算法,有望降低产品系统成本15-20%,提升整体发电效率。建议在下一代海上风电和储能产品中考虑采用该优化方案。