← 返回
风电变流技术 强化学习 ★ 5.0

基于深度强化学习的Vienna整流器PMSG风力发电系统性能优化控制方案

Deep Reinforcement Learning-Based Control Scheme for Performance Enhancement of PMSG Wind Turbine With Vienna Rectifier

作者 Yucheng Du · Bin Cai · Shaomin Yan · Weiyu Zhang · Zida Xing · Yalan Qiu
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2024年9月
技术分类 风电变流技术
技术标签 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 永磁同步发电机 维也纳整流器 深度强化学习 控制方案 发电效率
语言:

中文摘要

提出一种基于深度强化学习(DRL)的新型控制方案,以提升采用Vienna整流器的永磁同步发电机(PMSG)在风力发电系统中的运行性能。针对PMSG定子电流谐波及Vienna整流器中点电压波动问题,设计了基于风速、具有变权重系数的奖励函数,并构建以风速为首要观测状态的快速响应Agent模型,以降低外部环境干扰。通过构建多样化的随机训练环境,增强系统对不同风速变化场景的适应能力。采用双延迟深度确定性策略梯度(TD3)算法进行离线训练。仿真与实验结果表明,该方案在不同风速下控制误差小,显著提升了电能质量与发电效率。

English Abstract

A novel control scheme based on deep reinforcement learning (DRL) is presented to improve the operational performance of a permanent magnet synchronous generator (PMSG) with a Vienna rectifier (PGVR) in a wind turbine generator system. This article investigates the harmonics problem of stator current in PMSG and the fluctuation problem of neutral point voltage (NPV) in the Vienna rectifier. First, a wind speed-based reward function with variable weight coefficients is designed to realize the intelligent operation of the PGVR control system. Second, a fast response Agent model with wind speed as the first observation state is established to minimize the influence of the external environment on the PGVR control system. Finally, diverse stochastic training environments are elaborated to ensure that the PGVR control system has enough experience to cope with different wind speed variation scenarios. The twin delay deep deterministic policy gradient (TD3) algorithm is used for offline training. Simulation and experimental results show that the proposed scheme has small control errors at different wind speeds and effectively improves power quality and generation efficiency.
S

SunView 深度解读

该研究提出的基于DRL的Vienna整流器控制方案对阳光电源的风电变流器和储能变流器产品线具有重要参考价值。特别是其针对电流谐波和中点电压波动的优化思路,可应用于ST系列储能变流器的三电平拓扑控制。研究中基于风速的变权重奖励函数设计方法,对改进公司产品在复杂工况下的控制性能具有启发意义。该方案通过TD3算法实现的快速响应特性,可用于优化PowerTitan储能系统的并网控制策略,提升系统在大功率波动场景下的稳定性。建议在现有产品的控制算法中融入类似的深度强化学习框架,进一步提升电能质量和系统效率。