← 返回
风电变流技术 储能系统 强化学习 ★ 5.0

风电场在中长期滚动交易中的策略性投标:一种双层多智能体深度强化学习方法

Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach

作者 Yi Zheng · Jian Wang · Chengmin Wang · Chunyi Huang · Jingfei Yang · Ning Xi
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 383 卷
技术分类 风电变流技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Formulate optimal model with Black-Scholes model for wind farm MLT rolling transactions.
语言:

中文摘要

摘要 随着可再生能源在电力市场中渗透率的不断提高,边际电价受到抑制,给风电生产商的盈利能力带来了挑战。为此,有效的中长期(MLT)滚动交易能够对冲现货市场价格风险,提升盈利水平。然而,传统的投标方法往往难以捕捉风电出力及交易动态在较长时间跨度内的复杂不确定性。本文提出了一种专为优化风电中长期滚动交易而设计的双层多智能体深度强化学习(DRL)方法。该方法创新性地将Black–Scholes模型与Hamiltonian函数相结合,构建了一个最优决策框架,能够在短期投标效率与长期战略定位之间实现平衡。通过分别优化交易量和交易价格,该模型避免了变量间的冲突,确保了更精确且高效的决策过程。此外,该方法借助TimesNet-Latent-GNN框架所具备的先进时空建模能力,能够捕捉复杂的市场依赖关系,在管理价格风险和最大化盈利方面表现出卓越性能。基于山西电力市场真实交易数据的验证结果表明,与传统风险规避策略相比,所提出的方法在盈利能力和风险缓解方面均具有显著优势。

English Abstract

Abstract The increasing penetration of renewable energy in the electricity market suppresses marginal prices, posing profitability challenges for wind power producers. To address this, effective medium-to-long-term (MLT) rolling transactions can hedge against spot market price risks and improve profitability. However, conventional bidding approaches often fail to capture the intricate uncertainties associated with wind generation and trading dynamics over extended periods. This paper introduces a bi-level multi-agent deep reinforcement learning (DRL) approach specifically designed for optimizing wind energy MLT rolling transactions. The proposed method innovatively integrates the Black–Scholes model with the Hamiltonian function to structure an optimal decision-making framework that balances short-term bidding efficiency with long-term strategic positioning. By separately optimizing transaction quantities and prices, the model prevents conflicts between these variables and ensures more accurate and effective decision-making. Additionally, the approach leverages advanced spatiotemporal modeling capabilities through the TimesNet-Latent-GNN framework, enabling it to capture complex market dependencies and achieve superior performance in managing price risks and maximizing profitability. Validation using real-world transaction data from the Shanxi electricity market demonstrates that the proposed method significantly outperforms traditional risk-averse strategies in terms of profitability and risk mitigation.
S

SunView 深度解读

该深度强化学习竞价策略对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过双层多智能体优化框架,可提升风储联合系统在中长期电力市场的收益能力,有效对冲现货价格风险。其时空建模技术可集成至iSolarCloud平台,实现储能参与市场交易的智能决策,优化充放电策略。结合阳光电源GFM控制技术和VSG虚拟同步机功能,可构建新能源场站智能交易系统,提升新能源消纳经济性,为源网荷储协同优化提供算法支撑。