← 返回
风电变流技术 储能系统 强化学习 ★ 5.0

基于深度强化学习的移动式风力发电机分配以增强配电系统韧性

Deep Reinforcement Learning-Based Allocation of Mobile Wind Turbines for Enhancing Resilience in Power Distribution Systems

作者 Ruotan Zhang · Jinshun Su · Payman Dehghanian · Mohannad Alhazmi · Xiaoyuan Fan
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年6月
技术分类 风电变流技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 移动风力涡轮机 服务恢复 多智能体深度强化学习 电力分配系统 系统韧性
语言:

中文摘要

风能资源的广泛应用在应对气候变化中展现出显著优势。移动式风力发电机(MWT)可通过运输系统灵活部署,作为应急电源参与配电系统(PDS)灾后恢复,提升系统韧性。本文提出一种基于多智能体深度强化学习(MADRL)的MWT调度框架,采用深度Q网络(DQL)与双深度Q网络(DDQL)进行训练与对比,并引入动作限制机制以抑制风电波动影响。在锡乌福尔斯交通系统与四个IEEE 33节点配电系统耦合的案例中验证了该方法在提升灾后服务恢复能力方面的有效性。

English Abstract

The growing adoption of wind energy resources has demonstrated notable benefits in combating climate change. Mobile wind turbines (MWTs) are uniquely positioned to navigate transportation systems, being towed by trucks, and supply energy to power distribution systems (PDSs). This flexibility enables MWTs to serve as emergency power sources, thereby contributing to enhancing the system resilience by facilitating service restoration following extreme events. This paper presents a novel framework based on Multi-agent Deep Reinforcement Learning (MADRL) to dispatch MWTs for service restoration. Deep Q-learning (DQL) and Double Deep Q-learning (DDQL) approaches are implemented within the agent for training and comparison purposes. Additionally, an action limitation is incorporated into the proposed framework in order to mitigate the influence of wind power fluctuations. Case studies conducted on an integrated power-transport system, comprising a Sioux Falls transportation system and four IEEE 33-bus test systems, illustrate the effectiveness of the proposed restoration scheduling policy in enhancing PDSs' resilience against disasters.
S

SunView 深度解读

该研究的MWT调度与深度强化学习方法对阳光电源储能产品线具有重要参考价值。首先,MADRL框架可优化ST系列储能变流器的调度策略,提升PowerTitan系统在极端天气下的应急响应能力。其次,动作限制机制的设计思路可用于改进储能PCS的功率波动抑制算法。研究中的分布式协同控制方案也可集成到iSolarCloud平台,提升储能集群的智能调度水平。建议在ESS产品中植入类似的自适应控制算法,实现储能系统更灵活的电网支撑功能,增强产品在应急供电场景下的竞争力。