← 返回
氢能与燃料电池 强化学习 ★ 4.0

基于深度强化学习的氢燃料电池列车能量与热管理协同优化策略

Collaborative optimization strategy of hydrogen fuel cell train energy and thermal management system based on deep reinforcement learning

作者 Kangrui Jiang · Zhongbei Tian · Tao Wen · Kejian Song · Stuart Hillmansen · Washington Yotto Ochieng
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 393 卷
技术分类 氢能与燃料电池
技术标签 强化学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 A simulation model of the power and temperature control system of a hydrogen fuel cell train was developed.
语言:

中文摘要

摘要 轨道交通脱碳已成为轨道交通行业未来发展的主要方向。氢燃料电池(HFC)列车因其零碳排放和较低的改造成本,成为具有竞争力的潜在解决方案。然而,由于氢气在储存、运输和利用方面面临的挑战,其成本较高,仍是制约HFC列车商业化的主要因素。温度对HFC的能量转换效率和寿命具有显著影响,其热管理要求比内燃机更为严格。现有的HFC列车能量管理系统(EMS)通常忽略了HFC温度变化对能量转换效率的影响,难以根据环境动态条件实现能量与热管理的实时平衡控制。为解决这一问题,本文提出一种基于深度强化学习(DRL)的能量与热管理协同优化策略(ETMS),旨在最小化氢气消耗,将供能系统的温度控制在最优温度附近,同时确保电池充放电的动态平衡。首先,建立了完整的HFC列车物理模型。然后,将ETMS建模为马尔可夫决策过程(MDP),并通过先进的双深度Q学习算法训练智能体,使其与实际客运线路运行环境进行交互,以决策HFC的输出功率。最后,在英国西米德兰兹地区伍斯特至赫里福德线路上进行了仿真测试。结果表明,在英国全年温度范围内,与基于规则的方法和基于遗传算法(GA)的方法相比,所提出的方法分别节省超过5%和2%的能耗。此外,该方法还能为供能系统提供更优的温度控制和荷电状态(SOC)维持能力。

English Abstract

Abstract Railway decarbonization has become the main direction of future development of the rail transit industry. Hydrogen fuel cell (HFC) trains have become a competitive potential solution due to their zero carbon emissions and low transformation costs. The high cost of hydrogen, driven by the challenges in storage, transportation, and utilization, remains a major constraint on the commercialization of HFC trains. Temperature has a great impact on the energy conversion efficiency and life of HFC, and its thermal management requirements are more stringent than those of internal combustion engines. Existing HFC train energy management systems (EMS) generally overlook the impact of HFC temperature changes on energy conversion efficiency, and it is difficult to achieve real-time balance control of energy and thermal management according to environmental dynamic conditions. To address this issue, this paper proposes a collaborative optimization energy and thermal management strategy (ETMS) based on deep reinforcement learning (DRL) to minimize hydrogen consumption and control the temperature of the energy supply system near the optimal temperature, while ensuring the dynamic balance of battery charging and discharging. First, a complete physical model of the HFC train is established. Then, the ETMS is modeled as a Markov decision process (MDP), and the agent is trained through an advanced double deep Q-learning algorithm to interact with the real passenger line operation environment to make decisions on the output power of the HFC. Finally, a simulation test was conducted on the Worcester to Hereford line in the West Midlands region of the UK. The results show that within the UK's annual temperature range, the proposed method saves more than 5 % and 2 % of energy compared to the rule-based and GA-based methods, respectively. Additionally, it provides better temperature control and SOC maintenance for the energy supply system.
S

SunView 深度解读

该深度强化学习能量-热管理协同优化技术对阳光电源氢能及储能系统具有重要借鉴价值。其MDP建模与双深度Q学习算法可应用于ST系列PCS的多能源协调控制,实现电池SOC动态平衡与温控优化。该方法在充电站EV Solutions中可优化充电功率分配,降低设备热应力;在PowerTitan储能系统中可提升变流器效率并延长电池寿命。建议将DRL算法集成至iSolarCloud平台,实现环境自适应的预测性能量管理,为氢储耦合系统提供智能控制策略,助力轨道交通等场景的零碳解决方案。