← 返回
电动汽车驱动 强化学习 ★ 5.0

基于深度强化学习的逆变器控制器:增强含电弧炉电网中可再生能源的集成

Deep Reinforcement Learning Enabled Inverters: Strengthening RES Integration in Grids With Electric Arc Furnaces

作者 Ebrahim Balouji · Özgül Salor · Safwan Al Khatib
期刊 IEEE Transactions on Industry Applications
出版日期 2024年9月
技术分类 电动汽车驱动
技术标签 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电网支撑逆变器 可再生能源 深度确定性策略梯度 电网频率稳定 间歇性负荷
语言:

中文摘要

本文介绍了一种用于支撑电网的逆变器控制系统的开发,旨在将可再生能源(RES)接入电网,以应对存在诸如电弧炉(EAF)等间歇性负载的具有挑战性的工况。采用基于深度学习的方法,运用深度确定性策略梯度(DDPG)这一强化学习(RL)算法,对电网进行建模、估算电压和相角,并控制支撑电网的逆变器。目标是开发一种能产生虚拟惯量的支撑电网的逆变器,以稳定由间歇性负载引发的电网频率问题,并实现可再生能源(RES)与电力系统的无缝集成。使用DDPG无需一些传统的估算工具,如快速傅里叶变换(FFT)、同步参考坐标系(SRF)和低通滤波器,这些工具通常用于确定控制器回路的设定点。此外,通过所提出的基于深度学习的系统,避免了经典的基于PID控制器的参数调整。所提出的系统已在仿真环境中使用从为电弧炉工厂供电的变电站收集的实际现场数据进行了验证和测试。结果表明,基于DDPG的控制系统为维持电力系统的频率稳定提供了一种快速有效的控制机制。建议在存在间歇性负载的具有挑战性的工况下,这种创新方法可在推动可再生能源广泛接入电力系统方面发挥关键作用。

English Abstract

This paper presents development of a controller system for grid-supporting inverters to integrate renewable energy sources (RES) to the power grid for the challenging conditions of the existence of intermittent loads such as electric arc furnaces (EAFs). A deep-learning based method using Deep Deterministic Policy Gradient (DDPG), which is a Reinforcement Learning (RL) approach, is used for grid modeling, voltage and phase angle estimation, and control of the grid-supporting inverter. The goal is to develop a grid-supporting inverter which produces virtual inertia, stabilizes the grid frequency problems originating from intermittent loads and enables seamless integration of renewable energy sources (RES) to the power system. DDPG usage eliminates the need for some traditional estimation tools, such as Fast Fourier Transform (FFT), Synchronous Reference Frame (SRF) and low-pass filters, which are typically used methods for determining controller loop set-points. Moreover, with the proposed deep-learning based system, parameter tunings of the classical PID based controllers are avoided. The proposed system has been verified and tested in the simulation environment using actual field data collected at the transformer substations supplying EAF plants. It has been shown that the DDPG-based control system offers a fast and efficient control mechanism for maintaining the frequency stability of power systems. It is suggested that, this innovative approach can play a pivotal role in promoting the widespread adoption of RES to the system for the challenging conditions of intermittent loads.
S

SunView 深度解读

该深度强化学习逆变器控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器在工业电网应用具有重要价值。针对电弧炉等非线性负载引起的电压波动、谐波畸变问题,可增强现有构网型GFM控制策略,实现负序与无功功率的自适应动态补偿。该技术可应用于:1)PowerTitan储能系统在钢铁、冶金等工业园区的电能质量治理;2)SG系列逆变器在复杂工业电网的并网适应性提升;3)结合iSolarCloud平台实现基于强化学习的智能控制策略在线优化。相比传统PI控制,深度强化学习可显著提升逆变器在极端扰动下的鲁棒性,为阳光电源拓展工业微电网和电能质量治理市场提供技术储备。