← 返回
电动汽车驱动 SiC器件 强化学习 ★ 5.0

基于物理信息强化学习的可再生能源实时最优潮流控制

Physics-Informed Reinforcement Learning for Real-Time Optimal Power Flow With Renewable Energy Resources

作者 Zhuorui Wu · Meng Zhang · Song Gao · Zheng-Guang Wu · Xiaohong Guan
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年8月
技术分类 电动汽车驱动
技术标签 SiC器件 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 电力系统调度 物理信息强化学习 最优潮流 计算速度
语言:

中文摘要

针对可再生能源大规模接入带来的强不确定性,电力系统调度对实时性提出了更高要求。为实现实时环境下经济且可行的发电运行,本文提出一种基于约束强化学习(CRL)的物理信息强化学习(PIRL)方法用于最优潮流(OPF)求解。该方法设计了基于潮流方程的物理信息执行器,确保生成满足等式约束的发电方案,并通过在策略梯度中引入不等式约束来修正不可行动作。特别地,与传统CRL中使用网络逼近不同,所提方法可直接基于执行器输出精确计算约束相关成本。在IEEE 118节点系统上的仿真结果表明,该方法在获得相近发电成本的同时,计算速度显著优于传统内点法。

English Abstract

The serious uncertainties from the extensive integration of renewable energy generations put forward a higher real-time requirement for power system dispatching. To provide economic and feasible generation operations in real-time, a physics-informed reinforcement learning (PIRL) method based on constrained reinforcement learning (CRL) for optimal power flow (OPF) is presented in this paper. In the proposed method, a physics-informed actor based on the power flow equations is designed to generate generation operations that satisfy the equality constraints of OPF. To specify inequality constraints in actor optimization, the policy gradient is augmented with the constraints to correct unfeasible generation operations. In particular, the cost functions related to inequality constraints can be directly calculated based on the output of the actor, which is more accurate than using networks to approximate in general CRL methods. The proposed method is tested on the IEEE 118-bus system, and the simulation result shows that the proposed method achieves a significant improvement in computation speed compared with the traditional interior point method while obtaining a similar generation cost.
S

SunView 深度解读

该物理信息强化学习技术对阳光电源储能与光伏并网系统具有重要应用价值。针对PowerTitan大型储能系统和SG系列光伏逆变器的实时功率调度,该方法可嵌入iSolarCloud云平台,实现毫秒级最优潮流计算,显著优于传统优化算法。其约束强化学习框架可直接应用于储能变流器的多目标协调控制,在满足电网安全约束下优化充放电策略。物理信息执行器设计思路可启发构网型GFM控制算法改进,通过潮流方程约束确保并网稳定性。对于光储充一体化场景,该技术可实现源网荷储实时协同优化,提升新能源消纳能力和系统经济性,为智能运维平台提供AI决策支撑。