← 返回
基于个性化联邦强化学习的多微电网协同优化调度低碳经济方法
Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning
| 作者 | Ting Yang · Zheming Xu · Shijie Ji · Guoliang Liu · Xinhong Li · Haibo Kong |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 378 卷 |
| 技术分类 | 智能化与AI应用 |
| 技术标签 | 微电网 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Establish a framework for cooperative optimal scheduling of heterogeneous multi-microgrids based on privacy-preserving federated multi-agent reinforcement learning. |
语言:
中文摘要
摘要 互联多微电网(MMG)系统的协同优化调度为大规模可再生能源资源的高效利用提供了广阔前景和重要机遇。此类系统有助于实现能源资源的最优配置,并提升运行成本的经济性。然而,在协同优化调度过程中,异构微电网(MG)实体之间利益诉求的差异导致数据共享受阻,并引发隐私泄露问题。此外,多能耦合关系与高维决策过程进一步加剧了该问题的复杂性,可能导致优化过程难以收敛以及能源管理精度下降。同时,新建微电网缺乏运行数据与调度经验,制约了其调度任务的快速“冷启动”能力。为弥补上述研究空白,本文提出一种基于聚类的个性化联邦多智能体强化学习(C-PFMARL)的多微电网协同优化调度方法。该方法构建了包含电能与碳配额交易的多微电网系统低碳经济优化调度策略。首先,在联邦强化学习的隐私保护框架下,构建了多微电网的协同训练机制,各微电网基于异构多智能体双延迟深度确定性策略梯度(HMATD3)模型进行优化调度训练。通过联邦聚合模型梯度参数而非传输私有数据,实现了“数据不离域、合作可协同”的隐私保护效果。其次,提出一种以模型中间梯度参数为特征的双端动态聚类算法,用于组内知识共享;并采用基于神经网络分层结构的个性化联邦迁移策略,有效提升了本地优化调度模型在最优策略下的收敛速度与调度精度。此外,针对新建微电网实体设计了一种“冷启动”迁移策略,实现了优化调度经验的精准辅助与快速冷启动。最后,案例分析验证了所构建调度模型的有效性与训练收敛性。结果表明,多微电网系统的综合总成本降低了5.78%,碳排放量减少了8.43%;新建微电网的调度冷启动速度提升了42.83%,优化结果同时展现出显著的经济性与低碳效益。
English Abstract
Abstract The cooperative optimization dispatch of interconnected multi-microgrid (MMG) systems present broad prospects and significant opportunities for the efficient utilization of large-scale renewable energy resources . These systems facilitate the optimal allocation of energy resources and enhance economic efficiency in operational costs. Nevertheless, divergent interests among heterogeneous microgrid (MG) entities during the cooperative optimization dispatch process lead to obstacles in data sharing and issues with privacy breaches. Additionally, the process is complicated by multi-energy coupling relationships and high-dimensional decision-making, which can result in difficulties achieving convergence and a loss of accuracy in energy management . Furthermore, the lack of operational data and dispatch experience in newly established MGs hinders the ability to rapidly “cold start” dispatch tasks. To fill the above knowledge gap, a cooperative optimization dispatch method for MMG is proposed, which based on personalized federated multi-agent reinforcement learning with clustering (C-PFMARL). This method formulates an optimal low-carbon economic dispatch strategy that incorporates electricity and carbon allowance trading within multiple MG systems. Initially, a cooperative training framework for MMG is constructed under the privacy protection of federated reinforcement learning. This framework allows MMG to train optimization dispatch models based on heterogeneous multi-agent twin delayed deep deterministic policy gradient (HMATD3). With the federated aggregation of model gradient parameters instead of transferring private data, this approach achieves a privacy protection effect of “data cooperation without leaving locality “. Secondly, a dual-ended dynamic clustering algorithm for sharing knowledge within groups is proposed, characterized by model intermediate gradient parameters. It employs a personalized federated transfer strategy based on neural network layering, which enhances the convergence speed and dispatch precision under optimal strategies of the local optimization dispatch model. Moreover, a “cold start” transfer strategy aimed at newly established MG entities is formulated, achieving precise assistance and rapid cold start in optimization dispatch experience. Finally, our case analysis validates the effectiveness and training convergence of the constructed dispatch model. The overall integrated cost of the MMG system has been reduced by 5.78 %, and carbon emissions have decreased by 8.43 %. The dispatch cold-start speed for newly established MGs has improved by 42.83 %, with the optimization results also demonstrating robust economic and low-carbon benefits.
S
SunView 深度解读
该联邦强化学习多微网协同调度技术对阳光电源ST储能系统和iSolarCloud平台具有重要应用价值。可应用于PowerTitan储能集群的分布式优化调度,在保护各微网数据隐私前提下实现碳-电联合交易优化,降低综合成本5.78%、碳排放8.43%。其冷启动迁移策略可加速新建微网接入速度提升42.83%,为阳光电源多站点储能协同控制和GFM/GFL混合组网场景提供AI调度算法创新方向,增强iSolarCloud智慧运维平台的多能源耦合优化能力。